Changing the way undergraduates are taught
in a research-oriented biology department

Bill Wood
Department of MCD Biology
University of Colorado, Boulder
Assumptions:

• In general, we are not doing a good job of teaching science to undergraduates at large research universities.

• Educational research has identified "promising practices" for doing a better job, but science departments have been very slow to adopt them.
How can we change the teaching culture of an entire institution so that science is taught more effectively?

One approach: Carl Wieman's Science Education Initiative (SEI)

at U. of Colorado, Boulder and U. B. C., Vancouver, Canada

Funding from the University:

~ $4 M over 5 years, 2006-2011

Competitive applications from departments to participate in the program
Five science departments:

Chemistry and Biochemistry
Earth sciences
Integrative Physiology
MCD Biology
Physics

All strongly research-oriented
All teaching many undergraduates
The Science Education Initiative
At University of Colorado, Boulder

Formulate Learning Goals

Develop and test activities for formative assessment and achievement of learning gains

Develop pre-/post-assessments to measure learning gains

What should students learn?

What are students learning?

Which instructional approaches improve student learning?
MCD Biology Team

Jia Shi, Ph.D. Science Teaching Fellow
Michelle Smith, Ph.D. Science Teaching Fellow
Jennifer Knight, Ph.D. Senior Instructor and SEI Coordinator
Bill Wood, Ph.D. MCDB Faculty Director

with help from several course instructors
Formulate Learning Goals

for the core majors courses in the department;
I.e. define the curriculum in terms of learning goals.
The MCD Biology Curriculum for Majors

Year

Introductory (lab) or Biofundamentals

Genetics (lab)

Molecular Biology

Cell Biology (lab)

(either order)

Immunology or Developmental Biology (capstone courses)

Year

1

2, 3

3, 4
The MCD Biology Curriculum for Majors

<table>
<thead>
<tr>
<th>Year</th>
<th>Introductory (lab) or Biofundamentals (different instructors)</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Genetics (lab) (Fall and Spring - different instructors)</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>Molecular Biology (Fall and Spring - different instructors)</td>
<td>2, 3</td>
</tr>
<tr>
<td>2, 3</td>
<td>Cell Biology (lab) (Fall and Spring - different instructors)</td>
<td>3, 4</td>
</tr>
<tr>
<td>3, 4</td>
<td>Immunology or Developmental Biology (capstone courses)</td>
<td></td>
</tr>
</tbody>
</table>
The MCD Biology Curriculum for Majors

Introductory (lab) or Biofundamentals (different instructors)

Genetics (lab) (Fall and Spring - different instructors)

Molecular Biology (Fall and Spring - different instructors)
Cell Biology (lab) (Fall and Spring - different instructors)

(either order)

Immunology or Developmental Biology (capstone courses)

Task: Formulate a set of learning goals at course and topic levels, agreed on by all current instructors of each course, subject to approval by the undergraduate committee and eventually the faculty as a whole.

[Jia, Michelle, Bill, Course Instructors]
Example:

Syllabus for a workshop on active learning

Introduction

Use of clickers in class

Why bother with learning goals?

Setting learning goals

Syllabi and what information they give students

Learning goals and how they differ from syllabi

Using Bloom’s taxonomy in setting learning goals

Making instructor’s learning goals explicit

Assessing how well learning goals are met

Whose learning goals are they?

How instructors can affect student learning goals

Assessing student learning in class

Assessing student learning gains in a course:

- pre- and post-tests

Comparing different teaching methods for effectiveness
After this workshop, you should be able to:

• operate these clickers well enough to use them in discussions like this.
• use clickers effectively in your own classes.
• choose the best clicker system for your classes, based on knowledge about the various commercial clicker systems.
• describe the history of how clickers and their use evolved.
• predict the effects that introduction of clickers will have on a large lecture course.
• defend the introduction of clickers to skeptical colleagues based on established principles of learning and published evidence.
<table>
<thead>
<tr>
<th>Syllabus</th>
<th>Specific Learning Objectives - be able to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transcription</td>
<td>Define transcription.</td>
</tr>
<tr>
<td></td>
<td>Name the enzyme that catalyzes it.</td>
</tr>
<tr>
<td></td>
<td>Distinguish between transcription and translation.</td>
</tr>
<tr>
<td></td>
<td>Compare transcription in prokaryotes and eukaryotes.</td>
</tr>
<tr>
<td></td>
<td>Diagram a DNA duplex in the process of transcription showing base-pairing and strand polarity for all polynucleotides.</td>
</tr>
<tr>
<td></td>
<td>Predict a situation where transcription rates must be regulated, and describe how transcription factors accomplish such regulation.</td>
</tr>
</tbody>
</table>
Example: Learning goals for Genetics, MCDB 2150

Students enrolling in this course should be able to demonstrate achievement of the learning goals for Introductory Biology MCDB 1150 and 1151 or Biofundamentals MCDB 1111.

Teaching toward the learning goals below is expected to occupy 60%-70% of class time. The remaining course content is at the discretion of the instructors. The relative emphasis placed on the goals below and the order in which they are dealt with may also vary according to the tastes and interests of individual instructors. However, all students who receive a passing grade in the course should be able to demonstrate achievement of the following minimal goals.

* Achievement of starred goals will be aided by work in the lab course, MCDB 2151.

After completing this course, students should be able to:

1. Analyze phenotypic data and deduce patterns of inheritance from family histories.
 a) Draw a pedigree based on information in a story problem.
 b) Distinguish between dominant, recessive, autosomal, X-linked, and cytoplasmic modes of inheritance.
 c) Calculate the probability that an individual in a pedigree has a particular genotype.
 d) Define the terms *incomplete penetrance*, *variable expressivity*, and *sex-limited phenotype*, and explain how these phenomena can complicate pedigree analysis.

2. Describe the molecular anatomy of genes and genomes.
 a) Explain the meaning of *ploidy* (haploid, diploid, etc.) and how it relates to the number of homologs of each chromosome.
 b) Describe how the positions of individual genes on a given chromosome are related to their positions on the homolog of that chromosome.
 c) Differentiate between a gene and an allele.

ETC. 9 Course-level and 49 topic-level goals in total
Bloom's Levels of Understanding

6. Evaluation: think critically about and defend a position

 Judge, Justify, Defend, Criticize, Evaluate

5. Synthesis: transform, combine ideas to create something new

 Develop, Create, Propose, Design, Invent

4. Analysis: break down concepts into parts

 Compare, Contrast, Distinguish

3. Application: apply comprehension to unfamiliar situations

 Apply, Use, Diagram, Compute, Solve, Predict

2. Comprehension: demonstrate understanding of ideas, concepts

 Restate, Explain, Summarize, Interpret, Describe

1. Factual Knowledge: remember and recall factual information

 Define, List, State, Name, Cite

Bloom's Levels of Understanding

6. **Evaluation**: think critically about and defend a position

 What students really need to learn how to do!

5. **Synthesis**: transform, combine ideas to create something new

4. **Analysis**: break down concepts into parts

 Some, but not many questions on MCAT, GRE exams

3. **Application**: apply comprehension to unfamiliar situations

2. **Comprehension**: demonstrate understanding of ideas, concepts

 Most questions on introductory biology exams!

1. **Factual Knowledge**: remember and recall factual information
Bloom's Levels of Understanding

Students should be able to:

6. Evaluation: think critically about and defend a position
 - Judge, Justify, Defend, Criticize, Evaluate
5. Synthesis: transform, combine ideas to create something new
 - Develop, Create, Propose, Design, Invent
4. Analysis: break down concepts into parts
 - Compare, Contrast, Distinguish
3. Application: apply comprehension to unfamiliar situations
 - Apply, Use, Diagram, Compute, Solve, Predict
2. Comprehension: demonstrate understanding of ideas, concepts
 - Restate, Explain, Summarize, Interpret, Describe
1. Factual Knowledge: remember and recall factual information
 - Define, List, State, Name, Cite

Students should:

Understand . . .

Appreciate . . .

Be aware of . . .

Not useful learning goals
Current progress

<table>
<thead>
<tr>
<th>Learning goals</th>
<th>Introductory</th>
<th>Genetics</th>
<th>Cell</th>
<th>Molecular</th>
<th>Development</th>
<th>Immunology</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Done</td>
<td>Done</td>
<td>Done</td>
<td>Done</td>
<td>Done*</td>
<td>Done*</td>
</tr>
</tbody>
</table>

* Course level only
The Science Education Initiative
At University of Colorado, Boulder

Formulate Learning Goals

What should students learn?

What are students learning?

Which instructional approaches improve student learning?

Develop and test activities for formative assessment and achievement of learning gains

Develop pre-/post-assessments to measure learning gains
Design and validate a pre-post multiple-choice assessment for use in measuring student learning gains relating to the learning goals.

[Jia, Michelle, Jenny, Bill]

Design and test active-learning materials for use in and out of class (e.g. clicker questions, other in-class learning activities, homework problems).

[Jia, Michelle, Jenny, Course Instructors]
The MCD Biology Curriculum for Majors

Year

Introductory (lab) or Biofundamentals (different instructors)

1

Genetics (lab) (Fall and Spring - different instructors)

1

Molecular Biology (Fall and Spring - different instructors)

2, 3

(either order)

Cell Biology (lab) (Fall and Spring - different instructors)

3, 4

Immunology or Developmental Biology (capstone courses)
Current progress

<table>
<thead>
<tr>
<th></th>
<th>Learning goals</th>
<th>Pre-post assessment</th>
<th>Active-learning materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introductory Genetics</td>
<td>Done</td>
<td>Done</td>
<td>On hand</td>
</tr>
<tr>
<td>Cell</td>
<td>Done</td>
<td>In progr.</td>
<td>In progr.</td>
</tr>
<tr>
<td>Molecular Development</td>
<td>Done</td>
<td>In progr.</td>
<td>In progr.</td>
</tr>
<tr>
<td>Immunology</td>
<td>Done</td>
<td>To be done</td>
<td>In progr.</td>
</tr>
</tbody>
</table>
The Genetics Concept Assessment:
a new concept inventory for gauging student understanding of genetics
Michelle Smith, Bill Wood, Jenny Knight

A multiple-choice assessment designed as a pre-/post-test for several possible uses

Developing the GCA: Overview of the Process

1. Review literature on common genetics misconceptions.
2. Interview genetics faculty, and develop learning goals that most instructors consider vital to genetics understanding.
3. Develop and administer a pilot assessment based on known and perceived misconceptions relating to the learning goals.
4. Eliminate jargon, replace distracters with student-supplied incorrect answers, revise questions answered correctly by more than 70% of students pre-instruction.
5. Validate and revise through student interviews (33) and input from faculty experts (10) at several institutions.
6. Administer the resulting GCA to students (607) in both majors and non-majors courses (5) at three different institutions.
7. Evaluate the GCA by several statistical criteria: reliability, item difficulty, and item discrimination.
The 25 questions on the GCA were designed to assess achievement of each of 9 broad learning goals

An example:

LG 3: Describe the mechanisms by which an organism's genome is passed on to the next generation.

Q 8: A young man develops skin cancer that does not spread to any other tissues; the mutation responsible for the cancer arose in a single skin cell. If he and his wife (who does not have skin cancer) subsequently have children, which of the following statements is most correct:

a) All the man's children will inherit the mutation.
b) All the man's children will inherit the mutation if the mutation is dominant.
c) Some of the man's children may inherit the mutation, depending on which of his chromosomes they inherit.
d) None of the man's children will inherit the mutation.
Another example:

LG 5: Extract information about genes, alleles, and gene functions by analyzing the progeny from genetic crosses.

Q 14: Cystic fibrosis in humans is caused by mutations in a single gene and is inherited as an autosomal (non-sex-chromosome) recessive trait. A normal couple has two children. The first child has cystic fibrosis, and the second child is unaffected. What is the probability that the second child is a carrier (heterozygous) for the mutation that causes the disease?

a) 1/4
b) 1/2
c) 2/3
d) 3/4
e) 1
Student interviews

33 student volunteers from Colorado majors and non-majors courses, and others. Range of achievement levels: A to D grades. Think-aloud answers to test questions, with rationales for correct or incorrect choices.
Summary of expert responses to three queries about the 25 GCA questions

<table>
<thead>
<tr>
<th>Query</th>
<th>Agreement of experts</th>
</tr>
</thead>
<tbody>
<tr>
<td>The question tests achievement of the specified learning goal</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>>90%</td>
</tr>
<tr>
<td></td>
<td>>80%</td>
</tr>
<tr>
<td></td>
<td>>70%</td>
</tr>
<tr>
<td>Information given in the question is scientifically accurate</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>>90%</td>
</tr>
<tr>
<td></td>
<td>>80%</td>
</tr>
<tr>
<td></td>
<td>>70%</td>
</tr>
<tr>
<td>The question is written clearly and concisely</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>>90%</td>
</tr>
<tr>
<td></td>
<td>>80%</td>
</tr>
<tr>
<td></td>
<td>>70%</td>
</tr>
</tbody>
</table>
Five 1-semester courses in which GCA was administered as a pre- and post-test, 2007-2008 AY

- U. Colorado MCDB Genetics, majors (Fall)
- U. Colorado MCDB Genetics, majors (Spring)
- U. Colorado Human Genetics, non-majors
- Large Private Research U., Genetics, majors
- Small Liberal Arts College, Genetics, majors

8 instructors, total
JK taught the Colorado non-majors course
Other instructors played no role in developing GCA
Post-test embedded as first 25 questions in longer final exam
Statistical criteria for evaluating assessments

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Accepted range*</th>
<th>GCA pre-test</th>
<th>GCA post-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reliability **</td>
<td>0.80-0.90</td>
<td>0.93</td>
<td>NA</td>
</tr>
<tr>
<td>Item difficulty index (P)</td>
<td>0.3-0.8</td>
<td>0.09-0.69</td>
<td>0.48-0.92</td>
</tr>
<tr>
<td>Item discrimination index (D)</td>
<td>≥ 0.3</td>
<td>0.11-0.60</td>
<td>0.15-0.58</td>
</tr>
</tbody>
</table>

* By psychometricians, for standardized tests such as the SAT

** Coefficient of stability, test-retest method
<table>
<thead>
<tr>
<th>Group</th>
<th>n</th>
<th>Mean pre-test</th>
<th>Mean post-test</th>
<th>Mean normalized learning gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students</td>
<td>607</td>
<td>40.5% (+/- 0.6%)</td>
<td>74.0% (+/- 0.7%)</td>
<td>56.7% (+/- 1.0%)</td>
</tr>
<tr>
<td>TAs/LAs</td>
<td>18</td>
<td>76.9% (+/- 3.7%)</td>
<td>87.8% (+/- 3.8%)</td>
<td>40.0% (+/- 12.1%)</td>
</tr>
<tr>
<td>Experts</td>
<td>10</td>
<td>NA</td>
<td>93.0% (+/- 5.2%)</td>
<td>NA</td>
</tr>
</tbody>
</table>

Standard errors are shown in parentheses.
Correlations of pre-test, post-test, and learning gain percentages with average exam scores in one of the Colorado majors courses

Pre-test scores

Post-test scores

Learning gains (normalized)

Average exam score
P values (mean fraction correct answers) on each of the 25 GCA questions, pre- and post-tests, grouped by learning goal

\[n = 607 \] students
D values (discriminates between strong and weak students) on each of the 25 GCA questions, pre- and post-tests, grouped by learning goal

\[n = 607 \text{ students} \]
D values (discriminates between strong and weak students) on each of the 25 GCA questions, pre- and post-tests, grouped by learning goal

LG 6: Describe the processes that can affect the frequency of phenotypes in a population over time.
Student understanding of mitochondrial inheritance in two majors genetics courses, judged by P and D values for the relevant GCA question.
Statistical criteria for evaluating assessments

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Accepted range*</th>
<th>GCA pre-test</th>
<th>GCA post-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reliability**</td>
<td>0.80-0.90</td>
<td>0.93</td>
<td>ND</td>
</tr>
<tr>
<td>Item difficulty index (P)</td>
<td>0.3-0.8</td>
<td>0.09-0.69</td>
<td>0.48-0.92</td>
</tr>
<tr>
<td>Item discrimination index (D)</td>
<td>≥ 0.3</td>
<td>0.11-0.60</td>
<td>0.15-0.58</td>
</tr>
</tbody>
</table>

* By psychometricians, for standardized tests such as the SAT

** Coefficient of stability, test-retest method

Conclusions:

- SAT criteria don’t necessarily apply to concept inventories.
- Pre-post changes in P and D values provide useful information.
Design and validate a pre-post multiple-choice assessment for use in measuring student learning gains during the course that relate to the learning goals.

[Jia, Michelle, Jenny, Bill]

Design and test active-learning materials for use in and out of class (e.g. clicker questions, other in-class learning activities, homework problems).

[Jia, Michelle, Jenny, Course Instructors]
Design and validate a pre-post multiple-choice assessment for use in measuring student learning gains during the course that relate to the learning goals.

[Jia, Michelle, Jenny, Bill]

Design and test active-learning materials

for use in and out of class (e.g. clicker questions, other in-class learning activities, homework problems).

[Jia, Michelle, Jenny, Course Instructors]
Development and use of active-learning materials

Michelle Smith, Prof. Tin Tin Su, and clickers in the genetics course
Maternal-effect lethal mutants

\[
P_0 \quad +/+ \quad \text{mutagenize} \\
\downarrow \\
F_1 \quad \text{m/+} \\
\downarrow \\
F_2 \quad +/+ \quad \text{m/+} \quad \text{m/m}
\]

F2 embryo will: live \quad live \quad ?

Question: If \(m \) is a strict maternal-effect recessive mutation:

A) \(m/m \) embryo will live.

B) \(m/m \) embryo will die.

Initial individual answers

Class: 4
First prev. 1 2 3 4 next last
Queston: 6
First prev. 1 2 3 4 5 6 7 8 9 10 next last

\(n = 70 \)

49% 51%

0% 0% 0% 0% 0%

Response
Video of classroom during discussion
Maternal-effect lethal mutants

P0 +/+ mutagenize
 ↓
F1 m/+
 ↓
F2 +/+ m/+ m/m
F2 embryo will: live live ?

Question: If \(m \) is a
strict maternal-effect recessive mutation:

A) \(m/m \) embryo will live.

B) \(m/m \) embryo will die.

n=70

Initial individual answers

<table>
<thead>
<tr>
<th>Class: 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>First prev. 1 2 3 4 next last</td>
</tr>
<tr>
<td>Question: 6</td>
</tr>
<tr>
<td>First prev. 1 2 3 4 5 6 7 8 9 10 next last</td>
</tr>
</tbody>
</table>

After group discussion

<table>
<thead>
<tr>
<th>Class: 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>First prev. 1 2 3 4 next last</td>
</tr>
<tr>
<td>Question: 7</td>
</tr>
<tr>
<td>First prev. 1 2 3 4 5 6 7 8 9 10 next last</td>
</tr>
</tbody>
</table>

Responses (%)

<table>
<thead>
<tr>
<th>Responses (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 75 50 25 0</td>
</tr>
<tr>
<td>A 49% 51% 0% 0% 0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Responses (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 75 50 25 0</td>
</tr>
<tr>
<td>A 95% 5% 0% 0% 0%</td>
</tr>
</tbody>
</table>
Why peer discussion improves student performance on in-class conceptual questions

Michelle Smith, Bill Wood, Wendy Adams, Carl Wieman,
Jenny Knight, Nancy Guild, Tin Tin Su

Science, in revision, October 2008
Question: Do students learn during the discussion, or are they simply influenced by their knowledgeable peers to choose the right answer?

Experiment using isomorphc questions, Q1 and Q2:

Q1

Students vote individually, correct answer and distribution not revealed.

Peer discussion

Q1_{ad}

Students re-vote, correct answer and distribution still not revealed.

Q2

Isomorphic question: students vote individually, correct answers and distributions revealed.
Mean individual improvement from Q1 to Q2 for 16 isomorphic question pairs

Mean Q2 score is significantly higher than mean Q1 score (16% ± 1%SE)

Data from one of the Colorado majors genetics courses, 350 students
On average, students who corrected their initial response on Q1 did much better on Q2 than students who did not correct their initial response.
Almost all students who answered Q1 correctly also answered Q1ad and Q2 correctly.

All Students

Q1

Q1ad

Q2

92% correct

90% correct

10% incorrect

42% incorrect

8% incorrect

42% correct

58% incorrect

42% correct

58% incorrect

48% incorrect

44% correct

56% incorrect

77% correct

23% incorrect

56% incorrect
Mean individual improvement from Q1 to Q2 for question pairs of different difficulty

NG: normalized gain from Q1 to Q2. Note significant increase from Q1ad to Q2 on difficult questions (22%±2%SE).
Conclusion:

Most students are learning from peer discussion

But how??

Transmissionist view: the stronger students explain the correct reasoning to the weaker students, who therefore now understand it (Mazur).

Constructivist view: in the process of actively discussing and defending different points of view, students arrive at a correct understanding by themselves.
Mean individual improvement from Q1 to Q2 for question pairs of different difficulty

NG: normalized gain from Q1 to Q2.
For the group of four difficult question pairs, about 30/150 students who answered Q2 correctly were in a group where no one initially knew the answer to Q1 (naïve group).

Average group size: 3 students

Number of groups among 254 (mean) participants: ~88 groups

Students who answered Q1 correctly (mean): 44 students

Non-naïve groups *: ~40 groups

Students in non-naïve groups: ~120 students

Total students who answered Q2 correctly: 150 students

Students from naïve groups who answered Q2 correctly: ~30

* Assuming these students are randomly distributed.
Chi-square analysis on responses to each of the four difficult question pairs

Model: Q1-correct students are randomly distributed among the participating groups. All students in these non-naive groups, and only these students, answer Q2 correctly.

<table>
<thead>
<tr>
<th>Observed correct on Q1</th>
<th>Predicted* correct on Q2</th>
<th>Observed* correct on Q2</th>
<th>Total students participating</th>
<th>χ^2</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 (12%)</td>
<td>64</td>
<td>102</td>
<td>203</td>
<td>33.3</td>
<td><0.01</td>
</tr>
<tr>
<td>44 (16%)</td>
<td>114</td>
<td>147</td>
<td>277</td>
<td>15.9</td>
<td><0.01</td>
</tr>
<tr>
<td>50 (18%)</td>
<td>122</td>
<td>141</td>
<td>275</td>
<td>5.1</td>
<td>=0.02</td>
</tr>
<tr>
<td>52 (20%)</td>
<td>125</td>
<td>185</td>
<td>258</td>
<td>56.3</td>
<td><0.01</td>
</tr>
</tbody>
</table>

*Significantly different, p<0.05 for 3rd question, <<0.001 for others, df = 1
Student surveys support the constructivist explanation

Survey question (n=328 responding): When I discuss clicker questions with my neighbors, having someone in the group who knows the correct answer is necessary in order to make the discussion productive (agree/disagree).

47% of students disagreed.
Student surveys support the constructivist explanation

Comments from these students included:

"Often when talking through the questions the group can figure out the questions without originally knowing the answer, and the answer almost sticks better that way because we talked through it instead of just hearing the answer."

"Discussion is productive when people do not know the answers because you explore all the options and eliminate the ones you know can't be correct."
Conclusions

- The SEI is making progress.
- More pre-/post-assessments are needed.
- Assessments confirm best-practices are effective.
- Preparations for evaluating the impact of the SEI are underway.
Two isomorphic questions for clicker experiments

Question Q1/Q1ad: *C. elegans* Mel-2 gene products are deposited into the egg by the mother and are required for embryonic development. Mutations in the *mel-2* gene are recessive and cause maternal effect embryonic lethality.

In a cross between *mel-2* heterozygotes, what percent of embryos will **die**?

A) 100%
B) 50%
C) 25%
D) 0%

Question Q2: Zebrafish Ack15 gene products are deposited into the egg by the mother and are required for embryonic development. Mutations in the *ack15* gene are recessive and cause maternal effect embryonic lethality.

In a cross between an *ack15* homozygous mutant female and a heterozygous male, what percent of embryos will **die**?

A) 100%
B) 50%
C) 25%
D) 0%
Standard course planning vs Backward design

Choose textbook
↓
Create syllabus
↓
Write/revise lectures, notes
↓
Prepare PowerPoint presentations
↓
Write exams

Formulate broad learning goals
↓
Set specific learning objectives
↓
Prepare learning activities
↓
Design assessments (formative and summative)

Instructor-centered vs Student-centered