Understanding Educational Reforms: Impacts of Physics Education Research

Steven Pollock
Physics Department
CU Boulder

UBC
Oct 2009
Acknowledgements

Physics faculty:
Michael Dubson
Noah Finkelstein
Kathy Perkins
Carl Wieman

Ph. D. students:
Chandra Turpen
Lauren Kost
Charles Baily
Ben Spike
+recently graduated: 4 with PhD, 1 with MSc.

Postdocs/Scientists:
Wendy Adams
Stephanie Chasteen
Steven Goldhaber
Laurel Mayhew
Rachel Pepper
Noah Podolefsky

School of Ed collaborators:
Valerie Otero
Derek Briggs
Kara Gray
Bud Talbott
May Lee

This material is based upon work supported by the National Science Foundation under Grant No. REC 0448176, CAREER: Physics Education and Contexts of Student Learning. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the NSF.
Outline / Framing

• Brief overview of why, what, and how of PER
 – Building on a base
 – Theoretical models & educational practices

• Impacts
 – Introductory physics (results, replicability)
 – Longitudinal study
 – K12 teacher recruitment and prep
 – Upper division and gender issues (if time!)
How are we doing: Harvard

From Mazur 1997
Find the current through the 2 Ohm resistor and the potential difference between points a and b.

In the circuit shown, explain what happens when the switch is closed…
 a) To the current through the battery
 b) To the brightness of the bulbs
...
Overview of PER

- Investigating education scientifically
- Far more to our classes than what is traditionally evaluated

- Physics education research has something to say about this
 - Models of student learning
 - Tools for measurements
 - Evidence of impact
 - Curricula / approaches

Theory → Experiment → Application
PER: the field

Rapidly growing

- Journals (Physical Review, AJP, …)
- APS, PERC
- NSF funding
- >50 institutions with PER groups or faculty
Building on a base: Studying Science Education Scientifically

Classroom practice

Curricular reforms

Data

Student concepts and engagement

Theoretical frames
Take home message:

Students learn less than 25% of the most basic concepts (that they don’t already know).

Hestenes, Wells, Swackhamer, Phys Teacher 30 (1992) p. 141
R. Hake, “…A six-thousand-student survey…” AJP 66, 64-74 (‘98).
why does this happen?
Trad’l Model of Education

Instruction via transmission

Individual Content (e.g. circuits)
Built in to our classes?

2000 years ago

Today
PER Theoretic Background

Individual Prior knowledge

Instruction via transmission

Active construction

Content
Novice vs. Expert:

$f(x) = e^{-x^2}$

So clear...

$\rho - x^2$?

EEE.. Exx?

Of course!

$2 = 2$nd floor

$x = 1$st floor

$e = basement$

2 more minutes...

Zzzz...
actively engaging students is important
Back to the FCI

traditional lecture interactive engagement

\[\langle g \rangle = \frac{\text{post-pre}}{\text{100-pre}} \]

R. Hake, "...A six-thousand-student survey..." AJP 66, 64-74 ('98).
Many PER curricular innovations
U. Washington Tutorials
50 min/wk, 30 students, 1 grad TA + undergrad Learning Assistant (Weekly prep + LA seminar)

Interactive Lectures
Peer Instruction, pers. resp. system

Online HW System
CAPA or MP

Text
trad or PER based

Phys lecture
3-600 students
3 lectures/wk
(No lab)
Pedagogy of clickers

- Peer instruction
- Feedback
 - To students
 - To faculty
- Reasoning
 - Thinking about thinking
- Elicit/confront/resolve
Tutorials in Introductory Physics

Reconceptualize Recitation Sections

• Materials
• Classroom format / interaction
• Instructional Role
• Use of Learning Assistants
Tutorial vs. Trad'l Recitation
Tutorial
Tutorial Success (at UW)

Replication (at CU)

- UW - Trad
- UW - Tutorial
- CU - Tutorial

Tasks:
1. Newton & constraints
2. Force diagrams
3. Newton's III
4. Combine Newton's laws

S. Pollock, PERC 2004
Finkelstein & Pollock, Phys Rev: ST PER, 2005
CU: Pre- Post FMCE scores

R. Hake, "...A six-thousand-student survey..." AJP 66, 64-74 (‘98).
Other classes?
Physics 2: BEMA pre/post

Handoff to non-PER faculty

- Use same materials
- Same TA / LA training
- Same course structure / exams etc...

... everything looks the same... (except the instructor)
1120 BEMA pre/post
1120 BEMA pre/post

Non-PER Faculty
1st Time Teaching with Tutorials
Pre: 25
Post: 50 $g = .33$
1120 BEMA pre/post

Non-PER Faculty

2nd Time Teaching (+ PER backup)

Pre: 26
Post: 56

<g> = .40
actively engaging is important
what people know affects what they learn
contexts shape what students learn (content and beliefs)
Replication, but with strong variations Why?
1120 BEMA pre/post

F04 (N=319) Pretest: 26%
S05 (N=232): 27%

1120 BEMA pre/post

F04 (N=319) Post: 59%
S05 (N=232): 59%

Beyond the FMCE: Exam comparisons

N.B. 12 points is roughly 1 letter grade.
Impact on different pretest populations:
"high starters" 50<pre<93%

S. Pollock, 2005 PERC proceedings
does it last?
Longitudinal

Upper division majors’ BEMA scores

Grade in course

(3.1 ±.1) (3.0 ±.1) (3.3 ±.1) (3.2)

f04-f05 s06-s07 Grads

No Tutorials Tutorials had been an LA

Yellow: students who had been E&M LAs

S. Pollock, 2007 PERC Proc. 951, p.172
Clickers in Upper-division at CU

<table>
<thead>
<tr>
<th>Course</th>
<th>Sp04</th>
<th>Sp09</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mech & Math I</td>
<td></td>
<td>★★</td>
</tr>
<tr>
<td>Mech & Math II</td>
<td></td>
<td>★★</td>
</tr>
<tr>
<td>EM I</td>
<td></td>
<td>★★</td>
</tr>
<tr>
<td>EM II</td>
<td></td>
<td>★★</td>
</tr>
<tr>
<td>QM I</td>
<td></td>
<td>★★</td>
</tr>
<tr>
<td>QM II</td>
<td></td>
<td>★★</td>
</tr>
<tr>
<td>Solid State</td>
<td></td>
<td>★★</td>
</tr>
<tr>
<td>Stat Mech</td>
<td>★★</td>
<td></td>
</tr>
<tr>
<td>Optics</td>
<td></td>
<td>★★</td>
</tr>
<tr>
<td>Grad AMO</td>
<td>★★</td>
<td></td>
</tr>
</tbody>
</table>

- 12 non-PER ★★ and 2 PER ★★ faculty
CU Model of Teacher Prep

• Begin within science departments
• Learning Assistants:
 Use undergrads to implement research-based materials
 – Improve education of all students
 – Model best-practices for all students
 – Increase likelihood students engage in teaching
 – Improve content mastery of future teachers

Conclusions

• Educational practice is a researchable endeavor
 – We can make systematic progress
 – Imperative to include scientists
• Possible to achieve dramatic repeated results
• CU model strongly couples:
 – Reform and Research
 – K12 Teacher prep

It’s not about our teaching, it’s about student learning
Questions?

Much more at: per.colorado.edu
Or stem.colorado.edu