Measuring Science Learning

Rich Shavelson
Stanford University

Invited Presentation
Carl Wieman Science Education Initiative
March 25, 2010
Setting Learning Goals: What Do You Want To Emphasize

• Knowledge and skills?
• Critical thinking, analytic reasoning and problem solving?
• Habits of mind and epistemology?
• Individual and social understandings of the roles and responsibilities?
Psychological Framework Locating Science Achievement

General Ability ("Intelligence" or "G")

Crystallized Intelligence Fluid Intelligence

Verbal Reasoning Quantitative Reasoning Spatial Reasoning

Reasoning Comprehending Problem Solving Decision Making
Across Broad Domains (Humanities, Social Sciences, Sciences)

Reasoning Comprehending Problem Solving Decision Making
In Physics ... Sciences

Knowledge/Skills
Declarative Procedural Schematic
Strategic Epistemic Social/Communicative
Acquired In A Domain (e.g., Newtonian Mechanics)

Adapted from Shavelson & Huang (2003)
What Does It Mean To Achieve In Science?

- **Declarative knowledge**: knowing that--facts and concepts in the domain
- **Procedural knowledge**: routine procedures and some aspects of problem solving
- **“Schematic” (analytic) knowledge**: conceptual models of how the natural world works
- **Strategic (“transfer”) knowledge**: knowing when, where and how knowledge applies
- **“Epistemic” knowledge**: knowing how we know—knowing how scientific knowledge is built and justified
- **Communication & social skills**: ability to communicate ideas clearly and concisely in the genre of science, team work
Knowledge Type Verbs

• **Declarative**—term or concept
 Define or describe, List/name characteristics, Relate to other, Exemplify, Classify

• **Procedural:**
 – Known procedures or steps:
 Recognize, Select, Execute
 – Data/Design
 Collect, Measure, Record, Represent, Interpret, Control

• **Schematic**—natural phenomenon
 Explain, Predict, Infer, Apply model, Pose (Q), Synthesize, Integrate

• **Strategic**—novel situation
 Conceptualize, Pose questions, Apply related knowledge/reasoning
Bloom's Taxonomy of the Cognitive Domain
(Levels of Learning)

1. Factual Knowledge: remember and recall factual information
 Define, List, State, Label, Name, Describe

2. Comprehension: demonstrate understanding of ideas, concepts
 Describe, Explain, Summarize, Interpret, Illustrate

3. Application: apply comprehension to unfamiliar situations
 Apply, Demonstrate, Use, Compute, Solve, Predict, Construct, Modify

4. Analysis: break down concepts into parts
 Compare, Contrast, Categorize, Distinguish, Identify, Infer

5. Synthesis: transform, combine ideas to create something new
 Develop, Create, Propose, Formulate, Design, Invent

6. Evaluation: think critically about and defend a position
 Judge, Appraise, Recommend, Justify, Defend, Criticize, Evaluate

Higher level: Require deeper conceptual understanding
source of particular concern, but lower still matter.

Source: Carl Wieman @ Harvard Physics Dept.
Comparison of Verb Sets

Knowledge Type Verbs

Declarative—term or concept
- Define or describe, List/name characteristics, Relate to other, Exemplify, Classify

Procedural:
- Known procedures or steps:
 - Recognize, Select, Execute
- Data/Design
 - Collect, Measure, Record, Represent, Interpret, Control

Schematic—natural phenomenon
- Explain, Predict, Infer, Apply model, Pose (Q), Synthesize, Integrate

Strategic—novel situation
- Conceptualize, Pose questions, Apply related knowledge/reasoning

Bloom Type Verbs

Factual Knowledge: remember and recall factual information
- Define, List, State, Label, Name, Describe

Comprehension: demonstrate understanding of ideas, concepts
- Describe, Explain, Summarize, Interpret, Illustrate

Application: apply comprehension to unfamiliar situations
- Apply, Demonstrate, Use, Compute, Solve, Predict, Construct, Modify

Analysis: break down concepts into parts
- Compare, Contrast, Categorize, Distinguish, Identify, Infer

Synthesis: transform, combine ideas to create something new
- Develop, Create, Propose, Formulate, Design, Invent

Evaluation: think critically about and defend a position
- Judge, Appraise, Recommend, Justify, Defend, Criticize, Evaluate
Assessing Declarative Knowledge
Multiple-Choice: TIMSS Pop. 2

Air is made up of many gases. Which gas is found in the greatest amount?

A. Nitrogen
B. Oxygen
C. Carbon Dioxide
D. Hydrogen
Assessing Declarative Knowledge Structure: 11-Year-Old’s Concept Map

Assessing Procedural Knowledge: Incline Plane
Assessing Schematic Knowledge: Mental Models in Physics

• (A) A rocket is moving along sideways in deep space, with its engine off, from point A to point B. It is not near any planets or other outside forces. Its engine is fired at point B and left on for 2 sec while the rocket travels from point B to point C. Draw in the shape of the path from B to C. (Show your best guess for this problem even if you are unsure of the answer.)

• (B) Show the path from C after the engine is turned off on the same drawing.

Assessing Schematic Knowledge: Predict-Observe-Explain

A soap bar sinks

Cut it into two unequal parts (1/3, 2/3)

What will happen to each?
Rich cut a wood block into two unequal parts. Part A is the 2/3 of the original one and part B is 1/3 of the original one. Which of the following relationships is correct?

A. The volume of A is the same as the volume of B.
B. The mass of A is the same as the mass of B.
C. The density of A is the same as the density of B.
D. The weight of A is the same as the weight of B.
Distribution of Science Test Items across Knowledge Types (Percent)

<table>
<thead>
<tr>
<th>Knowledge Type</th>
<th>TIMSS-R</th>
<th>DSTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declarative</td>
<td>57.5</td>
<td>56.0</td>
</tr>
<tr>
<td>Procedural</td>
<td>19.2</td>
<td>20.0</td>
</tr>
<tr>
<td>Problem-Solving</td>
<td>21.9</td>
<td>24.0</td>
</tr>
</tbody>
</table>

Distribution of Science Test Items across Knowledge Types and Item Format (Percent)

<table>
<thead>
<tr>
<th>Test</th>
<th>Format</th>
<th>Declarative</th>
<th>Procedural</th>
<th>Problem-Solving</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIMSS-R</td>
<td>Multiple-Choice</td>
<td>49.0</td>
<td>15.0</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>Open-Ended</td>
<td>9.0</td>
<td>5.0</td>
<td>14.0</td>
</tr>
<tr>
<td>DSTP</td>
<td>Multiple-Choice</td>
<td>42.0</td>
<td>12.0</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td>Open-Ended</td>
<td>14.0</td>
<td>8.0</td>
<td>14.0</td>
</tr>
</tbody>
</table>
Cognitive Analysis: Link Between Logical And Cognitive Analysis

Based on the knowledge-type construct of science achievement, we expected participants’ use of knowledge inferred from the protocols (cognitive analysis) to be congruent with the knowledge-types demanded by test items (logical analysis).

<table>
<thead>
<tr>
<th>Type of knowledge used</th>
<th>Pre-classified knowledge-type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Declarative</td>
</tr>
<tr>
<td>(n=9)</td>
<td>(n=10)</td>
</tr>
</tbody>
</table>

- Declarative: 48* 8 11 0
- Procedural: 0 54 7 9
- Schematic: 9 16 41 0
- Strategic: 2 12 2 10

*Number of responses; Chi-square = 208.12, p<.001
Statistical Modeling (Cont’d)

- A good statistical fit:
 - $\chi^2=357.47$, df=333, $P=.17$
 - CFI=.999

- Knowledge-type items clustered together as predicted.

- Declarative, procedural, and schematic knowledge factors highly correlated.

- Comparison with alternative models (e.g., one general factor, subject-matter factors) favored the knowledge-factor model.

Source: Li (2001)
The Collegiate Learning Assessment

CLA
- Critical thinking
- Analytic reasoning
- Problem solving
- Communication

Performance Tasks

Analytic Writing Tasks
- Make an Argument
- Break an Argument
What Is a Performance Task?

Task Format
• Real-world problem
• Holistic, complex problem
• Information that may:
 – Be relevant or irrelevant to problem
 – Be reliable or unreliable
 – Lead to judgmental errors (e.g., correlation not causality, representativeness)

Response Format
• Make recommendation or decision, reach a conclusion, or solve a problem
• Minimally structured to support line of argument
• Written and not selected
• Requires evaluation of possible alternatives
Scoring

• Analytic reasoning and evaluation
 – Identifies strengths and weaknesses of alternative arguments
 – Accurately judges quality of evidence avoiding unreliable, invalid, and erroneous information

• Problem solving
 – Provides decision and solid rationale based on credible evidence
 – Acknowledges uncertainty and need for further information

• Writing effectiveness
 – Organizes “advice” in logically cohesive and easy-to-follow way
 – Provides valid and comprehensive details supporting each argument and information source on which based

• Writing mechanics
 – Writes well constructed complex sentences
 – Shows outstanding control of grammar conventions
 – Demonstrates adept use of vocabulary
You are the assistant to Pat Williams, the president of DynaTech, a company that makes precision electronic instruments and navigational equipment. Sally Evans, a member of DynaTech's sales force, recommended that DynaTech buy a small private plane (a SwiftAir 235) that she and other members of the sales force could use to visit customers. Pat was about to approve the purchase when there was an accident involving a SwiftAir 235. You are provided with the following documentation:

1: Newspaper articles about the accident
2: Federal Accident Report on in-flight breakups in single engine planes
3: Pat's e-mail to you & Sally's e-mail to Pat
4: Charts on SwiftAir's performance characteristics
5: Amateur Pilot article comparing SwiftAir 235 to similar planes
6: Pictures and description of SwiftAir Models 180 and 235

Please prepare a memo that addresses several questions, including what data support or refute the claim that the type of wing on the SwiftAir 235 leads to more in-flight breakups, what other factors might have contributed to the accident and should be taken into account, and your overall recommendation about whether or not DynaTech should purchase the plane.
CLA In-Basket Documents

“Crime” Performance Task

September 21, 2001

Jefferson Daily Press

Smart-Shop Robbery Suspect Caught Drug-Related Crime on the Rise in Jefferson

Ann McEachen, Jefferson Daily Press

On Monday, police arrested a man suspected of robbing the Smart-Shop grocery store of $13,275. The man was later found hiding in a car used by the Smart-Shop itself and he was arrested by police. He was identified as Mr. Kim, the owner of the Smart-Shop. When police arrived, Mr. Kim was driving the car and he was arrested for the robbery. He was charged with armed robbery and possession of drugs.

A few hours later police received a telephone complaint and reported that a man was seen in a neighborhood near Mr. Kim’s residence. The man was identified as Mr. Kim’s son, who police said was involved in a drug-related crime. The man was charged with armed robbery and possession of drugs.

This is the fifteenth drug-related arrest in Jefferson this month, and police are calling it an epidemic. Sergeant Hugh Morris said, “Drug sales are the number one law enforcement problem in Jefferson. Half of our arrests involve drugs. We need to do more to reduce the growing crime rate in Jefferson. The Council is divided on what to do. City Councillor Steve and Counciller called a press conference to demand that the city council support an increase in the police budget. If we put more cops on the street, they said, “we will reduce the crime rate, and we are not welcome in Jefferson.” Mayor candidate Dr. James page called for a different approach. More police won’t make a difference, we need more drug treatment programs,” he said.

The problem is not crime per se, but crime committed by drug users to fund their habits. Treat the drug users, and the crime will go away.”
CLA Make An Argument Writing

Directions: In 45 minutes, agree or disagree and explain the reasons for your position.

“In our time, specialists of all kinds are highly overrated. We need more generalists -- people who can provide broad perspectives.”
CLA Break An Argument Writing

Directions: In 30 minutes, discuss how well-reasoned you find the argument.

A well-respected professional journal with a readership that includes elementary school principals recently published the results of a two-year study on childhood obesity. (Obese individuals are usually considered to be those who are 20 percent above their recommended weight for height and age.) This study sampled 50 schoolchildren, ages 5-11, from Smith Elementary School. A fast food restaurant opened near the school just before the study began. After two years, students who remained in the sample group were more likely to be overweight—relative to the national average. Based on this study, the principal of Jones Elementary School decided to confront her school’s obesity problem by opposing any fast food restaurant openings near her school.
CLA Technology

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Attributes</th>
</tr>
</thead>
</table>
| Open-ended Tasks | • Tap critical thinking, analytic reasoning, problem solving and written communication
 • Realistic work samples
 • Engaging task as suggested by alluring titles such as “brain boost,” “catfish,” “lakes to rivers”)
 • Applicable to different academic majors |
| Computer Technology | • Interactive internet platform
 • Paperless administration
 • Natural language processing software for scoring students written communication
 • Online rater scoring and calibration of performance tasks
 • Report institution’s (and subdivision’s) performance (and individual student performance confidentially to student) |
| Focus | • Institution or school/department/program within institutions
 • Not on individual student performance (although their performance is reported to them confidentially) |
| Sampling | • Samples students so that not all students perform all tasks
 • Samples tasks for random subsets of students
 • Creates scores at institution or subdivision/program level as desired (depending on sample sizes) |
| Reporting | • Controls for students’ ability so that “similarly situated” benchmark campuses can be compared
 • Provides value added estimates—from freshman to senior year or with measures on a sample of freshmen and seniors
 • Provides percentiles
 • Provides benchmark institutions |
How We Know
Major-Specific Example: History

• Imagine a task asking history majors to explain (& justify) why this policy came about:

 Discovery Day
 October 21 Proclaimed A National Holiday By The President*

 I Benjamin Harrison, President of the United States of America ... do hereby appoint Friday, Oct. 21, 1892, the four hundredth anniversary of the discovery of America by Columbus, as a general holiday for the people of the United States. On that day let the people so far as possible cease from toil and devote themselves to such exercises as may best express honor to the discoverer and their appreciation of the great achievements of the four completed centuries of American life...

 Let the national flag float over every school house in the country ... In the Churches and in the other places of assembly of the people...

 * New York Times, July 22, 1892, p. 8

• Factors distinguishing novices (high school history students) and experts (history grad students):
 - Sourcing
 - Corroborating
 - Contextualizing

• Accompanied by an basket of historical documents:
 - Statistics on immigration by country
 - Statistics on religious affiliation
 - News story on changing immigration
 - News story on developments in Russia
Thank You!
Internet Platform: Introduction To Task

Introduction

Please read the instructions in Document 1 located in the Document Library (see right side of screen). Your answers to the questions that follow should describe all the details necessary to support your position. Your answers will be judged not only on the accuracy of the information you provide, but also on how clearly the ideas are presented, how effectively the ideas are organized, and how thoroughly the information is covered.

While your personal values and experiences are important, please answer all the questions solely on the basis of the information above and in the Document Library.

Write your answers in the box below each question. You can write as much as you wish; you are not limited by the size of the box on the screen.
Mayor Stone has asked you to evaluate each of Dr. Eager’s three main points. The Document Library on the right side of the screen contains materials that you should use in preparing your analysis of Dr. Eager’s points. Please take a few minutes now to skim through these documents.

Document 6 contains the chart Dr. Eager used to support the claim that Mayor Stone’s proposal for reducing crime “will only lead to more crime.” Do you agree or disagree with this statement? Use the box below to explain why you reached this conclusion. In other words, why do you believe Dr. Eager’s statement regarding this matter does or does not make sense? Be specific as to the strengths and limitations of Dr. Eager’s position on this matter and the information in the documents (and any other factors you considered) that led you to this conclusion.
Internet Platform: Library Document

State of Columbia
Department of Public Safety

Crime Statistics by County, 2000

The figure below shows the relationship between the number of police officers per 1,000 residents in a county and the incidence of robberies and burglaries in that county.

Crime Rates and Police Officers in Columbia’s 53 Counties

<table>
<thead>
<tr>
<th>Number of Robberies and Burglaries Per 1,000 Residents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of Police Officers Per 1,000 Residents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>---</td>
</tr>
</tbody>
</table>
Reliability

• Grading
 – Inter-reader consistency
 – High hand/machine agreement rate
 – Continually monitor machine accuracy
• Test scores – split sample analyses – high correlations:
 – School means on a task
 – School difference (residual) scores within a class
 – School value-added scores across classes
• High correlations require reliable scores
• Characteristics of participating schools are similar to those in a national database
Reliability Evidence: Performance Tasks

Table 2. Estimated Variance Components in the Example $s \times t \times j$ Design.

<table>
<thead>
<tr>
<th>Source</th>
<th>Variance Component</th>
<th>Estimate</th>
<th>%Total Variability</th>
</tr>
</thead>
<tbody>
<tr>
<td>School (s)</td>
<td>σ^2_s</td>
<td>817.466</td>
<td>20.9</td>
</tr>
<tr>
<td>Task (t)</td>
<td>σ^2_t</td>
<td>0a</td>
<td>0</td>
</tr>
<tr>
<td>Judge (j)</td>
<td>σ^2_j</td>
<td>62.564</td>
<td>1.6</td>
</tr>
<tr>
<td>$s \times t$</td>
<td>σ^2_{st}</td>
<td>671.423</td>
<td>17.1</td>
</tr>
<tr>
<td>$s \times j$</td>
<td>σ^2_{sj}</td>
<td>62.178</td>
<td>1.6</td>
</tr>
<tr>
<td>$t \times j$</td>
<td>σ^2_{tj}</td>
<td>0a</td>
<td>0</td>
</tr>
<tr>
<td>$s \times t \times j$, e</td>
<td>$\sigma^2_{stj,e}$</td>
<td>2305.770</td>
<td>58.8</td>
</tr>
</tbody>
</table>

aNegative variance component set equal to zero.

Reliability (Generalizability) = 0.803