Peer Instruction for the First Time: Experiences of a First Time User in Computer Science

Beth Simon
Computer Science and Engineering
University of California, San Diego

Formerly,
STLF Computer Science
CWSEI
UBC

Carl Wieman Science Education Initiative at the University of British Columbia
By the end of today’s talk you should be able to...

• LG1: Describe to a colleague what “ConcepTests”/clicker questions took the form of in introductory computing

• LG2: Assess the impact of clicker questions in your class via analysis of normalized gain based on student solo and group vote

• LG3: Discover easy ways to find great exam questions at the last minute

• LG4: Quote yet another set of rave student reviews for use of peer instruction in the classroom

• LG5: Feel more comfortable being a “first timer” with peer instruction in your class
Tried to Implement Peer Instruction “Faithfully”

• Assigned Reading Before Class

• Posed Solo/Group Vote questions
 - X% of time
 - Judged time based on perception of student engagement
 - Solo: timed
 - Discussion: not timed (with iclicker clock)

• Always indicated correct answer and tried to always discuss wrong answers

• Tried to always get students to explain a rationale why someone would guess a wrong answer

• Frequently and repeatedly motivated to students why clickers help them learn
 - Need to make a list of what I actually said and did and how often
Tried to Implement Peer Instruction “Faithfully”, BUT...

- No reading quizzes
 - And reading assignments not “spot on”
- Didn’t “assign” discussion groups (tried for 4 people last term)
- No lecture at all (basically)
 - The book is not hard to read
 - Concepts don’t rely on previous knowledge (e.g. calculus)
 - Book has good examples
- Did supplement with some meta-issues (not REALLY in book) (Note: I’d like to code these into categories - SIGCSE)
 - Debugging
 - Explanations of why
 - Memory model diagrams
 - Meta-analysis of how code works
How many times is each set of code executed?

1) Solo: (30 sec)
2) Discuss: (1min)
3) Group: (30 sec)

```java
Pixel[] pixelArray = this.getPixels();
int value = 0;
Pixel p = null;
for(int index = 0; index < pixelArray.length; index++){
    p = pixelArray[index];
    value = p.getRed();
    value = (int) (value * 0.5);
    p.setRed(value);
}
```
How many times is each set of code executed?

1) Solo: (30 sec)
2) Discuss: (1min)
3) Group: (30 sec)

```java
Pixel[] pixelArray = this.getPixels();
int value = 0;
Pixel p = null;
for(int index = 0; index < pixelArray.length; index++) {
    p = pixelArray[index];
    value = p.getRed();
    value = (int) (value * 0.5);
    p.setRed(value);
}
```
What picture most accurately describes what this code does?

```java
Pixel[] pixelArray = this.getPixels();
int value = 0;
Pixel p = null;
for(int index = 0; index < pixelArray.length; index++)
{
    p = pixelArray[index];
    q = pixelArray[index+1];
    p.setRed(q.getRed());
    p.setBlue(q.getRed());
    p.setGreen(q.getGreen());
}
```

A)

B)

C) None of these.
What picture most accurately describes what this code does?

```java
Pixel[] pixelArray = this.getPixels();
int value = 0;
Pixel p = null;
for(int index = 0; index < pixelArray.length; index++)
{
    p = pixelArray[index];
    q = pixelArray[index+1];
    p.setRed(q.getRed());
    p.setBlue(q.getRed());
    p.setGreen(q.getGreen());
}
```
Nested Loops: How do they work? What order are pixels changed?

- A method in Picture.java...

```java
Pixel p;
for (int foo = 0; foo < getWidth(); foo++)
{
    for (int bar = 0; bar < getHeight(); bar++)
    {
        p = getPixel(foo, bar);
        p.setColor(Color.BLACK);
    }
}
```
Nested Loops: How do they work?
What order are pixels changed?

• A method in Picture.java...

```java
Pixel p;
for (int foo = 0; foo < getWidth(); foo++)
{
    for (int bar = 0; bar < getHeight(); bar++)
    {
        p = getPixel(foo, bar);
        p.setColor(Color.BLACK);
    }
}
```
Why does this code have an error?

Pixel[] pixelArray = this.getPixels();
int value = 0;
Pixel p = null;
for(int index = 0; index < pixelArray.length; index++)
{
 p = pixelArray[index];
 q = pixelArray[index+1];
 p.setRed(q.getRed());
 p.setBlue(q.getRed());
 p.setGreen(q.getGreen());
}

A. It tries to access pixelArray[-1]
B. It tries to access pixelArray[0]
C. It tries to access pixelArray[pixelArray.length]
D. It tries to access pixelArray[pixelArray.length+1]
E. None of the above
Why does this code have an error?

Pixel[] pixelArray = this.getPixels();
int value = 0;
Pixel p = null;
for(int index = 0; index < pixelArray.length; index++)
{
 p = pixelArray[index];
 q = pixelArray[index+1];
 p.setRed(q.getRed());
 p.setBlue(q.getRed());
 p.setGreen(q.getGreen());
}

A. It tries to access pixelArray[-1]
B. It tries to access pixelArray[0]
C. It tries to access pixelArray[pixelArray.length]
D. It tries to access pixelArray[pixelArray.length+1]
E. None of the above
DEBUGGING: Where is the best place to put a print statement?

```java
Pixel[] pixelArray = this.getPixels();
int value = 0;
int index = 0;
while (index < pixelArray.length) {
    value = pixelArray[index].getRed();
    value = (int) (value * 0.5);
    pixelArray[index].setRed(value);
    index = index + 1;
}
```
DEBUGGING: Where is the best place to put a print statement?

Pixel[] pixelArray = this.getPixels();
int value = 0;
int index = 0;
while (index < pixelArray.length) {
 value = pixelArray[index].getRed();
 value = (int) (value * 0.5);
 pixelArray[index].setRed(value);
 index = index + 1;
}
public void funky() {
 SoundSample[] noiseArray = this.getSamples();
 int zzz = 0;
 for (int i = 0; i < noiseArray.length) {
 SoundSample sample = noiseArray[i];
 int foo = sample.getValue();
 zzz += foo;
 }
 int yyy = zzz / noiseArray.length;
 for (int i = 0; i < noiseArray.length; i++) {
 SoundSample sample = noiseArray[i];
 sample.setValue(yyy);
 }
}

A. Makes it higher pitched
B. Makes it louder
C. Makes it lower pitched
D. Makes it quieter
E. Makes a silent sound
public void funky() {
 SoundSample[] noiseArray = this.getSamples();
 int zzz = 0;
 for (int i = 0; i < noiseArray.length; i++) {
 SoundSample sample = noiseArray[i];
 int foo = sample.getValue();
 zzz += foo;
 }
 int yyy = zzz / noiseArray.length;
 for (int i = 0; i < noiseArray.length; i++) {
 SoundSample sample = noiseArray[i];
 sample.setValue(yyy);
 }

 A. Makes it higher pitched
 B. Makes it louder
 C. Makes it lower pitched
 D. Makes it quieter
 E. Makes a silent sound
How did they do?

Solo Correctness: avg 48%

Group Correctness: avg 64%

Solo Correctness: avg 41%

Group Correctness: avg 60%

* Mazur: >35% && <70% solo

* Genetics: 52% solo, 68% group
Normalized Gain: \((\text{group-solo})/(1-\text{solo})\)

CS1 Fa 2008: avg 31%

CS1 Wi 2009: avg 39%

CS1.5 Wi 2009: avg 29%

CS1.5 Sp 2009 - avg 35%

*Genetics course at UC: 41%-48% (unpublished)
Making a midterm:

• A new course
 - CS1 in fall 2008, media computation
 - Whew! Review clicker questions, ask those

• CS 1.5
 - Specifically LOOK for clicker questions where the group vote was poor
 • Use identical or ISOMORPHIC questions
CS1.5 Spring 2009
Clicker Performance vs. Exam Performance

<table>
<thead>
<tr>
<th>Content</th>
<th>Solo (avg =)</th>
<th>Group (avg =)</th>
<th>Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integer parameter pass</td>
<td>34%</td>
<td>60%</td>
<td>97%, 95%</td>
</tr>
<tr>
<td>Object parameter pass</td>
<td>56%</td>
<td>49%</td>
<td>97%</td>
</tr>
<tr>
<td>Object new, param pass</td>
<td>53%</td>
<td>74%</td>
<td>83%</td>
</tr>
<tr>
<td>Array list remove and size (tricky) None of the above</td>
<td>24%</td>
<td>23%</td>
<td>84%</td>
</tr>
<tr>
<td>Ordering of exception catch</td>
<td>19%</td>
<td>26%</td>
<td>59%</td>
</tr>
<tr>
<td>Array element underpinning of ArrayList (mod clicker: add, exam: remove)</td>
<td>23%</td>
<td>60%</td>
<td>77% (84% if index off by one, but right pattern)</td>
</tr>
</tbody>
</table>
Would you recommend that other instructors in computing courses use clickers with discussion?

CS1 Wi 2009

CS1.5 Sp 2009

CS1.5 Wi 2009
Please rate your agreement with this statement:

Clickers with discussion is valuable for my learning

<table>
<thead>
<tr>
<th>Course</th>
<th>Disagree</th>
<th>Neutral</th>
<th>Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS1 Winter</td>
<td>14%</td>
<td>8%</td>
<td>78%</td>
</tr>
<tr>
<td>CS1.5 Spring (2nd term)</td>
<td>7%</td>
<td>7%</td>
<td>87%</td>
</tr>
<tr>
<td>CS1.5 Winter (2nd term)</td>
<td>8%</td>
<td>11%</td>
<td>81%</td>
</tr>
</tbody>
</table>
Which of the following best describes your discussion practices in the class this term?

- I always discuss with the group around me, it helps me learn
- I always discuss with the group around me, I don't really learn, but
- I sometimes discuss, it depends
- I rarely discuss, I don't think I get a lot out of it
- I rarely discuss, I'm too shy

CS1 Wi 2009

CS1.5 Sp 2009

CS1.5 Wi 2009
Did you really read the textbook before coming to class?

CS1 Wi 2009

CS1.5 Sp 2009

CS1.5 Wi 2009
If you rarely read the textbook, do you think it hindered your learning in class?

CS1 Wi 2009

CS1.5 Sp 2009

CS1.5 Wi 2009

Absolutely, I had a hard time with clicker questions because I had no...

Sometimes, it depended on the material

Not really, I can usually figure things out in class

Not really, I was able to figure things out in discussion period in c...
What makes a good clicker question?

- **Code/Calculations:** (29)
 - Clicker questions that apply to a sample method/piece of code work best.
 - Example code problems, piece by piece, helps to know how to write my own programs (like the recursion questions)

- **Exams/Quiz Prep:** (19)
 - "ones that appear on exams and quizzes, or are useful to my actual programming experience."

- **Tricky** (8)
 - The questions that were helpful were the one that I got right, but the majority of the class got wrong. This is because it helped me to understand that I really knew the material for a tricky question. These "tricky" questions helped me get a fuller understanding of the material.
“The ones I miss (yeah, real useful, I know...). Generally I remember more from the ones I get wrong than the ones I get right because I'll be on a test and be like, "Oh yeah, I made that stupid mistake in class... It should be this instead." It's generally like that with tests, too--if I miss something once, I remember it better and (usually) get it right the next time around.”
What makes a bad clicker question?

• Too Fast (7)
 - I can figure out everything if given enough time. It just takes a moment or two to really digest what the slide says and then answer. Sometimes slides are flashed by too quickly and I just pick something at random, then sort out my answer later.

• Tricky (6)

• Conceptual (5, 6)
Go forth!

• You too can do it!

• Resources:
 - PeerWise DB of clicker questions?
 - Explanations for each of the answers...
 - Voting record
 - Chapter and Page info

• What would you want to know in a video?
 - About CS, different than physics
4) (1pt) What is printed when we run this code?

```java
public static void main(String[] args) {
    double y = 33.3;
    foo(y);
    System.out.println(y);
}
```

```java
public static void foo(double x) {
    x = x + 11.1;
    System.out.print(x + " ", ");
}
```

A) 33.3, 33.3
B) 33.3, 44.4
C) 44.4, 33.3
D) 44.4, 44.4
E) This code does not compile because the foo method doesn't have a variable y
Clicker: 1st day class: 3.31.09: Solo: 34% Group: 60%

A. 33
 34

B. 34
 33

C. 33
 33

D. 34
 34

E. None of the above

```java
public static void main (String[] args) {
    int x = 33;
    foo(x);
    S.o.pln(x);
}
```

```java
public static void foo (int x) {
    x++;
    S.o.pln(x);
}
```
5) (2pts) What is printed when we run this code?

```java
public static void main(String[] args) {
    double y = 33.3;
    double x = 99.9;
    x = foo(y, x);
    System.out.println(y +", " + x);
}

public double void foo(double y, double x) {
    y = y + 11.1;
    x = x + 0.1;
    return x;
}
```

A: 33.3, 99.9
B: 44.4, 99.9
C: 33.3, 100.0
D: 44.4, 100.0
E: None of the above
Midterm 6: Object param pass
(complex with ordering):
B or C: 97%

public static void main(String[] args)
{
 //The Car constructor takes car color, and number of gallons of gas in tank
 Car beths = new Car("red", 0);
 Car lisas = new Car("silver", 0);
 foo(beths, lisas);
 System.out.println("Beth: " + beths.getGas() +
 " Lisa: " + lisas.getGas());
}

public static void foo(Car lisas, Car beths)
{
 beths.fill(5.5); //Assume adds to gallons of gas stored
 lisas.fill(2.2); //Assume adds to gallons of gas stored
}

A) Beth: 0.0 Lisa: 0.0
B) Beth: 5.5 Lisa: 2.2
C) Beth: 2.2 Lisa: 5.5
D) Beth: 7.7 Lisa: 7.7
E) None of the above
public static void main (String[] args) {
 //Assume 33 is how balance already spent
 CreditCard visa = new CreditCard(33);
 foo(visa);
 S.o.p(visa.getBalance());
}

public static void foo(CreditCard visa) {
 int temp = visa.getBalance();
 visa.setBalance(temp+1);
 S.o.p(visa.getBalance());
}
7. (2pts) What is printed when we run this code?

```java
public static void main(String[] args) {
    // The Car constructor takes car color, and number of gallons of gas in tank
    Car beths = new Car("red", 0);
    Car otherCar;
    otherCar = foo(beths);
    System.out.println("Beth: " + beths.getGas() +
                        " Other: " + otherCar.getGas());
}

public static Car foo(Car beths) {
    beths = new Car("blue", 0);
    beths.fill(12.0); // assume adds to gallons of gas stored
    return beths;
}
```

A) Beth: 0.0 Other: 0.0
B) Beth: 0.0 Other: 12.0
C) Beth: 12.0 Other: 0.0
D) Beth: 12.0 Other: 12.0
E) None of the above
Clicker: split lecture 4.02/4.07
Solo: 53% Last Group: 74%

A. 33
 34
B. 34
 33
C. 33
 33
D. 34
 34
E. None of the above

```
public static void main (String[] args) {
    //Assume 33 is how balance already spent
    CreditCard visa = new CreditCard(33);
    foo(visa);
    S.o.p(visa.getBalance());
}

public static void foo(CreditCard visa) {
    visa = new CreditCard(50);
    S.o.p(visa.getBalance());
}
```
15) (2pts) What is output by this code?
ArrayList foo = new ArrayList();
for (int i = 0; i < 10; i++)
{
 Integer bar = new Integer(i);
 foo.add(bar);
}
for (int j = 0; j < 5; j++)
{
 foo.remove(j*2);
 System.out.println(foo.size()+",");
}
10,8,6,4,2
9,7,5,3,1
10,10,10,10
9,9,9,9
None of the above.
16) (1pt) What is printed when the file input.txt does not exist?
String line = null;
try {
 BufferedReader reader =
 new BufferedReader(new FileReader("input.txt"));
 line = reader.readLine();
 reader.close();
} catch (Exception ex)
{ S.o.p(“Error1”; System.exit(0); } catch (FileNotFoundException ex)
{ S.o.p(“Error2”; System.exit(0);}

A. Error1
B. Error2
C. Error1Error2
D. This code does not compile since, in the catch blocks, both Exceptions are named ex
E. None of the above
17. (2pts) What indexing pattern do we want for our assignment to “remove” the element at index 4 in an array called foo (which has 7 values in it)? (mimicking what ArrayList does in its call to remove)

E) None of the above
Clicker: array underpinning of ArrayList - add

Solo: 23% Group: 60%

A. \(\text{foo}[3] = \text{foo}[4] \)
 \(\text{foo}[4] = \text{foo}[5] \)
 \(\text{foo}[5] = \text{foo}[6] \)

B. \(\text{foo}[5] = \text{foo}[4] \)
 \(\text{foo}[6] = \text{foo}[5] \)
 \(\text{foo}[7] = \text{foo}[6] \)

C. \(\text{foo}[7] = \text{foo}[6] \)
 \(\text{foo}[6] = \text{foo}[5] \)
 \(\text{foo}[5] = \text{foo}[4] \)

D. \(\text{foo}[6] = \text{foo}[5] \)
 \(\text{foo}[5] = \text{foo}[4] \)
 \(\text{foo}[4] = \text{foo}[3] \)

E. None of the above

What indexing pattern do we want for our assignment to “move elements up” to insert at 4