Chemistry

CWSEI Department Summary

This document summarizes the Chemistry Department's activities as part of the Carl Wieman Science Education Initiative over the years 2007-2017. In this initial version, it replaces a series of web pages that were updated over the lifetime of the CWSEI. It may be updated in future with more detail on impact.

For questions, please contact:

Jackie Stewart (jstewart@chem.ubc.ca) or Warren Code (warcode@science.ubc.ca)

Contents

Overview	2
People	2
Activities	3
Overview of Activities	3
Course Evaluation & Redesign Phases	3
Additional Undergraduate Program Activities	3
TA Development	3
Courses	4
Education Research	9
Comparison of Oral and Written Laboratory Reports	9
Two-Stage Review	10
Analytical Chemistry Concept Inventory	10
Chemistry Concept Diagnostic Tests	10
Organic Chemistry (CHEM 233) Learning Objectives Alignment Study	10
1st Year Practical Lab Skills	10
CHEM 123 Lab Learning Goals	10
Attitudinal Survey	10
Presentations at national/international meetings	10
Impact	11
Transformed Course Counts	11
Impact in terms of seats/registrations	11
Publications and Presentations	12
Related Department Links	13

Overview

The Chemistry Department began work on CWSEI course transformations in 2008. Initially, the work focused on evaluating and redesigning the Chemistry 123 lab (Physical and Organic Chemistry).

In spring 2013, the second phase began, which focused on 1) analytical chemistry courses (CHEM 211 and 311), 2) third-year integrated laboratories (CHEM 315/325/335/345), and 3) Global Challenges, a Chemistry Perspective (CHEM 341).

The third and final phase of course transformations, beginning in spring 2016, will address Chemistry 208 (Coordination Chemistry), 218 (Fundamentals of Reactivity in Inorganic Chemistry), 233 (Organic Chemistry for the Biological Sciences), 300 (Communicating Science), and 327 (Introduction to Materials Chemistry).

In addition to CWSEI teaching initiatives, the department underwent an independently funded external review of our 1st year chemistry program. Mike Wolf, Derek Gates and Jackie Stewart have developed improved course support materials for CHEM 121 (tailored in-house textbook, homework sets, power point notes for instructors, etc.) independently supported by TLEF and Skylight. Additionally, seven interactive online tutorials have been developed and implemented over the past eight years to complement existing CHEM 121 lab experiments as part of an ongoing co-operative between Sophia Nussbaum and the ChemCollective of Carnegie Mellon University. Funding from Skylight was used to develop yet another interactive tutorial and refine two existing tutorials with Carnegie Mellon. In fall 2014, activities supported by UBC's Flexible Learning Initiative were implemented in CHEM 121.

People

CWSEI Deptartment Director: Jackie Stewart (2010-2017), Laurel Schafer (2007-2010)

STLFs: Elizabeth Gillis, Jane Maxwell, Kerry Knox, Jennifer Duis

Faculty: R. Algar, D. Bizzotto, M. Blades, G. Bussiere, G. Dake, E. Grant, P. Kennepohl, A. Lekhi, J. Love, V. Monga, J. Rodríguez Núñez, C. Rogers, R. Stoodley, M. Thachuck

Students: Chad Atkins, Claire Chatalova Sazepin, Eugene Chong, Caitlyn Grypma De Jong, Ravina Binning, Zachary Nevin, Armandeep Sidhu, Merrill Isenor, Nicholas Mah, Samantha D'Souza, Ainge (Y. C.) Chang, Aalia Sachedina, James Zhou, Michael Carlson, and Yuri Samozvanov

Activities

Overview of Activities

Course Evaluation & Redesign Phases

PHASE I (2008-2010):

Focused on the evaluation and redesign of the CHEM 123 lab – Physical and Organic Chemistry and CHEM 121 lab - Structural Chemistry, with Application to Chemistry of the Elements.

PHASE II (2013-2015):

Focused on 1) analytical chemistry courses (CHEM 211 and 311), 2) third-year integrated laboratories (CHEM 315/325/335/345), and 3) Global Challenges, a Chemistry Perspective (CHEM 341).

PHASE II (2016-2017):

Will address Chemistry 208 (Coordination Chemistry), 218 (Fundamentals of Reactivity in Inorganic Chemistry), 233 (Organic Chemistry for the Biological Sciences), 300 (Communicating Science), and 327 (Introduction to Materials Chemistry).

Additional Undergraduate Program Activities

- We identified interdisciplinary science lab skills that other science streams consider to be important and/or are expecting students to get from 1st year chemistry to inform our curriculum. Additionally, seven interactive online tutorials have been developed and implemented over the past nine years to complement existing CHEM 121 lab experiments as part of an ongoing co-operative between Sophia Nussbaum and the ChemCollective of Carnegie Mellon University. Funding from Skylight was used to develop another interactive tutorial and refine two existing tutorials with Carnegie Mellon. In fall 2014, activities supported by UBC's Flexible Learning Initiative were implemented in Chemistry 121 and currently work is underway to implement flexible learning activities in Chemistry 123.
- We surveyed Co-op employers to aid in focusing efforts of optimization and determining impact on upper level laboratory revitalization.
- The Department modified course curriculum for CHEM 415/425 to expand research opportunities to chemistry majors.
- In 2015 the Department started rolling out an entirely new curriculum. A new required course for chemistry majors (CHEM 300) "Communicating Chemistry" will be designed with the assistance of CWSEI to best achieve the course goals of improving students' communication skills and their awareness of the process of science.

TA Development

Anka Lekhi and Sophia Nussbaum have been offering yearly TA training since 2009, with support from the TA Training Program of the Provost and Vice-President Academic Office and the Chemistry Department. This training has emphasized the skills needed for incoming graduate students to teach first-year labs. Elizabeth Gillis has started a TA peer-mentoring program for students working in the third-year labs, which complements a start-of-term workshop.

Courses

Status as of May 2016:

Course	Learning goals	New Assessments	Improved Methods
Chemistry, with Application to Chemistry of the Elements (Lab component) (Oct '08 start) Faculty: Sophia Nussbaum STLF: Jennifer Duis Paper (JCE 2013): A Process for Developing Introductory Science Laboratory Learning Goals To Enhance Student Learning and Instructional Alignment	Course-level goals: Outline from CHEM 123, focus on transferable skill acquisition Experiment-level goals: process for development established Course-level outline and experiment-level development process appropriate for the entire lab program	New Assessments Attitudes survey (C-LASS CHEM) given 3 Terms Development and implementation of end-of-term technique assessments: — Year 1: TA visual assessment of technique with provided guide — Year 2: Visual assessment guide refined and technique questions added to the end-of-term quiz.	Improved Methods Alterations made to increase alignment with 1st-year lab goals: — Marks re-allocated to increase emphasis on maintaining a lab notebook. — Directions on maintaining a lab notebook expanded in lab manual. — Brief "taking observations" module developed and added during check-in. — Peer marking of observations using supplied templates added to each experiment — Technique modules will be expanded to include choosing glassware for analytical vs. non-analytical purposes.
			glassware for analytical vs. non-
			— "Pair-technique- ing" (ala comp. sci. pair programming) was piloted with a

			small subset of
			students.
CHEM 123: Physical and	Course-level goals:	Chemistry background	Learning Goals
Organic Chemistry (Lab	working version,	and demographics	incorporated into lab
component)	inspired by Rice	survey developed and	manual (under
(July '08 start)	University's interdisciplinary science	given 2 Terms.	refinement).
Faculty: Sophia	lab learning objectives,	Attitudes survey (C-LASS	Alterations made to
Nussbaum, Laurel	approved by Chemistry	CHEM) given 2 Terms.	increase alignment with
Schafer, Jackie Stewart	Lab Committee		learning goals:
STLF: Jennifer Duis		Pre-/Post-Lab skills	
	Experiment-level goals:	survey (written)	— Marks re-allocated
The First Year	(developed from existing	developed & given 4	to increase emphasis
Assessment sub-	course materials) 4 of 4	Terms. "LG use"	on maintaining a lab
committee of the	experiments complete	questions added.	notebook.
Chemistry Lab	and approved by		
Committee oversaw this	Chemistry Lab	Refined hands-on lab	— Directions on
project. The sub-	Committee	skills assessment	maintaining a lab
committee members		implemented 2 terms.	notebook expanded in
were: Brian Cliff (chair),			lab manual.
Guillaume Bussiere, Ed		Assessment of	
Grant, Laurel Schafer,		experiment specific	— Expanded quizzes
Vishakha Monga, Sophia		learning goal	will be introduced to
Nussbaum, John		achievement (surveys,	test technical skills.
Sherman, Robin		observations,	— Addition of manual
Stoodley, Nancy Vered,		interviews); 3rd round of	dilutions to
Peter Wassell, and Dana		refinement based on	electrochemistry
Zendrowski.		expert & student	experiment to increase
		validation	technical experience
Poster (CWSEI EOY			and conceptual
2009): Instruments for			understanding of the
assessing practical skill			effect of dilution on
development in a first-			voltage.
year chemistry			
laboratory course			— Lab final modified
laboratory course			to test students' "solo"
			completion of an
			experimental design,
			recording of
			observations and data,
			and evaluation of skills
			using a pipet and
			weighing by
			differences.

CHEM 211: Analytical Chemistry

(Spring 2013 start)

Faculty: Russ Algar, Anka instructors of both Lekhi, José Rodríguez Nuñez

STLF: Jane Maxwell

Poster (Science **Education Open House** 2016): Pilot implementation of an online homework system for practice and feedback on decisionmaking skills

Talk (CSC 97th **Canadian Chemistry** Conference, June 2014): Development of a Concept Inventory for Measuring Learning Gains in Analytical Chemistry

Course-level learning goals developed in consultation with current and previous CHEM 211 and 311

Topic-level learning objectives have been revised through an iterative process, with slight modifications each Ongoing: Development term. There now appears to be consensus that the current learning goals meet the needs of all instructors.

Mid-term survey of student perceptions of instructional activities and tools.

End-of-term surveys probing student perceptions of the course and the discipline | Winter 2014: of analytical chemistry

of an analytical chemistry concept inventory

Lecture:

Fall 2013: Introduction of concept questions and clickers, and increased use of teambased-learning (TBL) activities.

Introduction of clickers to support new and existing concept questions and class activities. Continued use of TBLs. Short, in-class writing assignments connecting topics to bigpicture learning goals.

Winter 2015: Continued use of iclickers. Introduction of in-class worksheets for problem solving related to the equilibrium unit.

Lab:

Increased emphasis on lab skills via an earlyterm lab skills test (including a remedial intervention) and TA grading of lab skills based observation

Fall 2013: Introduction and evaluation of a new guided-inquiry experiment in which students design, build, and test a simple photometer

Fall 2014: Introduction

			of a new guided-inquiry experiment based on comparing instrumental and classical methods of analysis.
CHEM 311: Instrumental	Course-level learning	2014: Two-stage review	2014: Increased use of
Analytical Chemistry	goals developed in	activity probing	in-class activities,
(Spring 2013 start)	consultation with	students' background	including clicker
	current and previous	knowledge of key	questions and
Faculty: Dan Bizzotto	instructors of both	concepts from 1st year	predictions related to
STLF: Jane Maxwell	CHEM 211 and 311	physics and CHEM 211	demonstrations and
	Datailadlaamina	administered on first	simulations
	Detailed learning objectives emphasizing	day of class	Group activities
	core competencies	Introduction of a two-	emphasizing the
	required to achieve	stage midterm exam	common decision-
	course-level goals	Juage maream enam	making and evaluation
		2015: Continued use of	processes that link the
		two-stage review and	different topic areas of
		midterm exam	the course
		Modified regular course assignments to include exam-type questions (marked for effort rather than correctness), based students' feedback. 2016: Continued use of two-stage review and midterm exam. Continued use of revised course assignments.	2015: Continued and expanded use of in-class activities, clickers, demonstrations, and simulations Piloting a suite of tutorials focused on high-level problemsolving skills for the new course tutorials 2016: Implemented tutorial activities
СНЕМ	Course-level learning	April 2013:	Learning goals
315/325/335/345:	goals produced based on	, , ,	incorporated into lab
Chemistry Integrated	framework developed	student perceptions of	manual
(Spring 2013 start)	by previous CWSEI	course (post-course) — Attitudes survey (C-	Analysis of course
(Shillig 2013 Stair)	project in CHEM 123	LASS CHEM)	content for purpose of
Faculty: J. Bates, G.			informing future

Bussiere, T. Kunz, V.		September 2013:	development in terms
Monga, J. Rodríguez		— Survey probing	of:
Núñez, C. Rogers, R.		student perceptions of	 skills and techniques
Stoodley		orientation to course	covered
STLF: Elizabeth Gillis,		and expectations (pre-	cognitive tasks
Kerry Knox (2013-2014)		course)	involved
		 Attitudes survey (C- 	
Poster (Science		LASS CHEM)	Dry lab workshop
Education Open House			introduced focused on
2016): Developing the		December 2013:	organic chemistry
third-year integrated		Survey probing student	structures
chemistry laboratory:		perceptions of new	
Putting the pieces		online safety training	Pilot project in oral lab
together		module	assessments for multiple
<u></u>			experiments.
Tally () (a sinter in		April and December	·
Talk (Variety in		2014:	
Chemistry Education &		Survey probing student	
Physics Higher Education		perceptions of course	
Conference, August		(post-course)	
2014): The use of		,	
cognitive task analysis to		September 2014 and	
inform the development		January 2015:	
of a laboratory course in		Survey probing student	
chemistry		perceptions of	
		orientation to course	
		and expectations (pre-	
		course)	
		course	
		Ongoing:	
		Analysis of student lab	
		reports with respect to	
		progress towards	
		achieving learning goals	
		acine ving learning godis	
		2015-2016: Lab report	
		"wrappers" to assess	
		student learning from	
		oral and written	
		laboratory reports.	
CHEM 341: Global	Course-level learning	April 2013:	Introduction of in-class
Challenges: A Chemical	goals produced	Survey probing student	interactive activities to
Perspective		perceptions of course	provide enhanced
	1		p. crisc criticalised

(Spring 2013 start)	and attitudes towards	opportunities for
	role of chemistry in	discussion and peer-
<u>Faculty</u> : Gregory Dake	society (post-course)	instruction, including:
STLF: Elizabeth Gillis,		jigsaw activities
Kerry Knox (2013-2014)	January 2014 and	— small-group
	January 2015:	discussion
Poster (Science	Survey probing student	— whole-class
Education Open House	attitudes towards	discussion
2015): Using Course	learning chemistry and	 concept mapping
Committees as Student	role of chemistry in	
Feedback	society (pre-course)	Introduction of
		semester-long group
Poster (CWSEI EOY	2015:	investigative research
2014): Research-based	Exams replaced with	and communication
instructional strategies	two-stage exams (total	project involving several
in a course on the role of	of three exams)	opportunities for
		revising work based on
chemistry in solving	Student course	feedback, peer review,
global challenges	committee created to	and structured practice
	provide continuous	in team-work
	feedback on the course.	
		Sample problems
		offered as additional
		resource

CHEM 113, 121, 415, 425, 449: Attitudes survey (C-LASS CHEM) administered Spring '09 (CHEM 113 & 121 also participated in the written Lab Skills Survey).

CHEM 233: Detailed learning objectives, attitudes survey (C-LASS CHEM), "flipped classroom" approach.

CHEM 425/448: Engaging students in cutting-edge chemical education research, report writing, and presentations.

Education Research

Comparison of Oral and Written Laboratory Reports

Compared to traditional written reports, oral assessment may provide a more accurate evaluation of conceptual understanding as well as provide enhanced opportunities for learning since feedback can be given in real time. We are studying the effect of mode of assessment on student learning and seeking to gain insight into how a student's preparation and experience of assessment affects short- and long-term learning.

Two-Stage Review

Jane Maxwell, Lisa McDonnell (Biology), and Carl Wieman wrote the article An Improved Design for In-Class Review, Journal of College Science Teaching, Vol. 44(5), pp. 48-52 (2015).

Analytical Chemistry Concept Inventory

Development of a diagnostic test to evaluate students' understanding of key concepts in 2nd year analytical chemistry is in progress. Talk (CSC 97th Canadian Chemistry Conference, June 2014):

Development of a Concept Inventory for Measuring Learning Gains in Analytical Chemistry — Jane Maxwell

Chemistry Concept Diagnostic Tests

Propose administration and validation of an existing chemistry concept test to first year chemistry students.

Organic Chemistry (CHEM 233) Learning Objectives Alignment Study

Investigating students' perceptions of the alignment between learning objectives and assessment, probing their ability to judge cognitive complexity of learning objectives, assessment items, and study tactics.

1st Year Practical Lab Skills

Compare students' achievement of practical lab skills as determined by written vs. hands-on assessment

CHEM 123 Lab Learning Goals

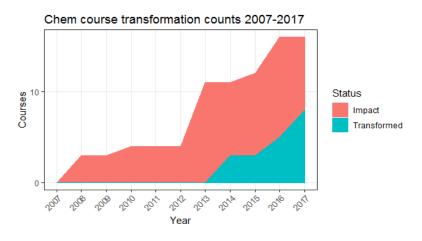
Developed multiple assessments of students' achievement of lab learning goals: Poster (CWSEI EOY 2009): Instruments for assessing practical skill development in a first-year chemistry laboratory course

Attitudinal Survey

C-LASS CHEM given in multiple courses, statistical comparisons between UBC and CU-Boulder.

Poster (April 2009): General chemistry students' belief about chemistry and learning chemistry: An international comparison — Jennifer Duis, Carl Wieman, Laurel Schafer

2014-2015: CLASS-Chem survey data from 2008-2010 re-analyzed to examine trends between attitudes, attitude shifts, and choice of major in science (with a focus on Chemistry and Biochemistry majors). We are also in the process of verifying the factor structure of CLASS-Chem survey responses among UBC students.

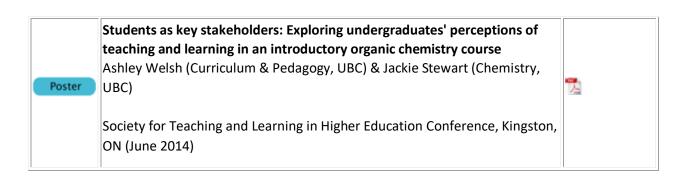

Presentations at national/international meetings

237th, 240th, & 249th American Chemical Society National Meeting, 21st & 22nd Biennial Conference on Chemical Education, 92nd, 93rd, 97th, & 98th Canadian Chemistry Conference, Improving University Teaching 34th International Meeting, 20th International Conference on Learning, Society for Teaching and Learning in Higher Education (2015).

Impact

Transformed Course Counts

As of Spring 2018, we had 16 courses with CWSEI and/or Skylight influence:


Impact in terms of seats/registrations

We can look at this in terms of the **55 undergraduate CHEM courses offered in 2017** with LEC, LAB or DST as primary activity and excluding distance ed. sections. In terms of **seats/registrations** (with LEC, LAB or DST as primary activity; excludes distance ed. sections):

EFFECT	Seats.2012	Seats.2013	Seats.2014	Seats.2015	Seats.2016	Seats.2017
Transformed	552	474	1911	2261	2349	2378
LabTransform ed	3744	3585	3802	4010	4024	3897
Impact	441	410	349	364	397	398
Other/None	7490	7395	5687	5357	4950	4994
	Prop.Seats.20	Prop.Seats.20	Prop.Seats.20	Prop.Seats.20	Prop.Seats.20	Prop.Seats.20
EFFECT	Prop.Seats.20 12	Prop.Seats.20 13	Prop.Seats.20 14	Prop.Seats.20 15	Prop.Seats.20 16	Prop.Seats.20
EFFECT Transformed	•	•		•	•	
	12	13	14	15	16	17
Transformed LabTransform	4.5%	4.0%	16.3%	15 18.9%	20.0%	20.4%

Publications and Presentations

	A positive student experience of collaborative project work in upper-year undergraduate chemistry. Kerry Knox, Elizabeth Gillis, and Greg Dake (Chemistry, UBC)	Link
Paper	Chemistry Education Research and Practice, 20(2), 340–357 (2019), DOI: 10.1039/C8RP00251G	
Paper	Build Your Own Photometer: A Guided-Inquiry Experiment To Introduce Analytical Instrumentation Jessie Wang, José Rodríguez Núñez, Jane Maxwell, and Russ Algar (Chemistry, UBC)	restricted access link
	J. of Chemical Ed, Vol. 93(1), pp 166–171 (2016), DOI: 10.1021/acs.jchemed.5b00426	
Paper	An Improved Design for In-Class Review E. Jane Maxwell (Chemistry, UBC), Lisa McDonnell (Zoology, UBC), & Carl Wieman	2
	Journal of College Science Teaching, Vol. 44(5), pp. 48-52 (2015)	
Paper	A Process for Developing Introductory Science Laboratory Learning Goals To Enhance Student Learning and Instructional Alignment Jennifer Duis, Laurel Schafer, Sophia Nussbaum, and Jaclyn Stewart (Chemistry, UBC) J. of Chemical Education, Vol. 90, No. 9, pp 1144–1150 (2013)	7_3
Talk	The use of cognitive task analysis to inform the development of a laboratory course in chemistry Kerry Knox (Chemistry, UBC) Variety in Chemistry Education & Physics Higher Education Conference,	7.
	University of Durham (August 2014) Development of a Concept Inventory for Measuring Learning Gains in Analytical Chemistry	
Talk	Jane Maxwell (Chemistry, UBC) CSC 97th Canadian Chemistry Conference, Vancouver, BC (June 2014)	½

Related Department Links

Chemistry Dept. home: https://www.chem.ubc.ca/

Chemistry Learning Blog: http://learning.chem.ubc.ca/