Can the effectiveness of teaching methods be measured with final exam scores?

A follow-up to last year's poster

Georg Rieger Physics & Astronomy, UBC

Overview

- Normalized P100 final exam scores with level of difficulty.
- Slightly positive trend reported last year disappears with more refined analysis.
- Refined tools useful for predicting exam scores and learning about question difficulties.

Simple Bloom

Normalized final exam score:

 $performance = rac{exam \ percentage \ imes \ Bloom's \ level}{average \ Bloom's \ level \ (2.87)}$

Cambridge Assessment Tools

CRAS (Complexity, Resources, Abstractness and Strategy), based on the 'Scale of Cognitive Demand' (**SCD**), Greatorex et al., Research Matters, **15** 27 (2013).

Modifications: interpret and specify scales for certain question types in physics exams.

For example, multiple-answer questions (MA) receive a higher score than multiple-choice questions (MC).

Hard to rate exam difficulty on an absolute scale. Tools useful for a **relative comparison**, e.g. comparing Physics 100 final exams from different years.

One judge might be sufficient for this: "A rater with intimate knowledge of the course is therefore in a good position to come up with a consistent rating of all exam questions. Video:

http://www.cambridgeassessment.org.uk/insights/using-the-cras-framework/

Fig. 1: Average final exam percentage and averages normalized by level of difficulty.

Cognitive Demands with Bloom's, CRAS and SCD

Results

- Analysis with Bloom's taxonomy: slightly better exam performance in recent years.
- Analysis with CRAS and SCD: no trend.
- Analysis of P100 2015W final exam draft:
 - Based on previous exam averages, CRAS and SCD scores, predicted an average final exam score of around 55%.
 - Suggested four question that could be simplified (without giving up on testing the topics in question).
 - Predicted score (low 60s) for modified exam matched the average score of 62%.

Carl's Bloom's Level Chart

(Learning Goals workshop, UBC PHAS, May 2007)

Bloom's Taxonomy of the Cognitive Domain (~= content+skills+habits of mind)

- 1. Factual Knowledge: remember and recall factual information Define, List, State, Label, Name, Describe
- 2. Comprehension: demonstrate understanding of ideas, concepts Describe, Explain, Summarize, Interpret, Illustrate
- 3. Application: apply comprehension to unfamiliar situations Apply, Demonstrate, Use, Compute, Solve, Predict, Construct, Modify
- 4. Analysis: break down concepts into parts Compare, Contrast, Categorize, Distinguish, Identify, Infer
- 5. Synthesis: transform, combine ideas to create something new Develop, Create, Propose, Formulate, Design, Invent
- 6. Evaluation: think critically about and defend a position Judge, Appraise, Recommend, Justify, Defend, Criticize, Evaluate

Higher level: Require deeper conceptual understanding

Bloom's Levels

Evaluated by single rater (me)

≻Two sources:

- Bloom's level chart with action words (from Carl's learning goal presentation)
- Blooming tool (Casagrand and Semsar, U of Colorado, unpublished)

From Greatorex et al., Research Matters, 15, 27 (2013). I added the colored textboxes.

Figure 1: The Scale of Cognitive Demand: Edwards and Dall'Alba 1981

Charac	teristic Elements	of Groups on the Sca	ale Similar to	o Strategy in	
Dimens	ions of Cognitive L	Demand	CRAS		
Group	Complexity	Openness	Implicitness	Level of Abstraction	
1	Simple operations	No generation of new ideas	Data are readily available to the senses	Deals with concrete objects or data stored in the memory	Definition-level questions
Z	Require a basic understanding	\$	Data to be operated on are given	Predominantly deals with concrete objects or issues	Basic concepts
					Basic interpretation
3	Understanding, application or low level analysis	Limited generation of new ideas	A large part of the data is given but requires generation of the final outcome	\$	Intermediate concepts 1-step calculations
4	 ‡	Generation of ideas from a given data base		Corresponds to concrete- abstract transition	2-step calculations Questions with interpretation of graphs and data
5	Analysis and/ or synthesis	Generation of ideas which are original for the student	Data are not available in a readily usable form – must be transformed	Abstract	Advanced and/or Context-rich
6	Evaluation	Highly generative	Require a view of the entity in question as part of a more extensive whole	Highly abstract	

← Level → Dimension 1 Z 3 4 5 1: Recall definition, facts Complexity 2: Simple interpretation or plug in The complexity Simple operations Synthesis or 4 ← → numbers. of each (i.e. ideas/ steps) evaluation of component No comprehension, operations 3: More difficult concepts or 2 step except that required Requires technical calculation. operation or idea and the for natural language comprehension 4: Questions involving data from links between No links between Makes links table, graphs or circuits; them operations between calculations requiring more than 2 operations steps. Resources 1: Simple recall without data The use of data All and only the **←** → Student must and information data/information generate the 2: No additional data required. 1 needed is given necessary data/ equation information 3: Data must be extracted, 2 equations Abstractness 4: Assumptions or facts not given The extent to Deals with concrete ← → • Highly abstract 4 needed which the objects student deals 1: No technical terms; 2: Kinematics, Forces; with ideas rather than 3: Energy, Heat, FBD; Vectors; 4: Circuits, Radiation, Graphs concrete objects 5: Complex models (Climate, complex circuits, etc) or phenomena 1: True/False Strategy The extent to 4 Strategy is given ← → • Student needs to 2: MC 2.5: MA which the student No need to devise their own 3: Identify equation, 1 step devises (or selects) monitor strategy strategy calculation. and maintains a No selection of Student must monitor 4: Advanced calculation: 2 strategy for information required the application of tackling and No organisation steps, 2 equations their strategy answering the required Must select 5: Context-rich problem with content from a question more than 2 steps and large, complex pool assumptions. of information +1: Data from previous part Must organise how required to communicate response +0.5: If extra or missing information (but not context-

Figure 2: The CRAS Framework of Demands: Hughes et al., 1998

** The arrows indicate that the characteristic element is intermediate between two more distinct points on the continuum.

rich)