What Might Affect Student Performance in a Math Course?

Joseph Lo

CWSEI, Department of Mathematics

Incoming skills?

In a two-term differential calculus course, incoming precalculus skills correlates with the performance in Term 1, but become less important in Term 2 as students sharpen their skills.

Correlation <i>r</i> between course grades and September basic skills diagnostic			
Oct MT	Dec Exam	Feb MT	Apr Exam
0.52	0.42	0.32	0.28

The diagnostic at the end of the course correlates more with the final exam.

Correlation r between tests and March basic skills diagnostic		
Apr Exam	Final Grade	
0.42	0.5	

Introduction

Besides incoming skills, what other factors might affect student performance in a math course? How about... gender difference?

Based on the course grades and various surveys, we will attempt to identify some demographic, psychological and behavioural factors that might influence student performance.

The analysis

- Focus on Math 110 (Sept 2010 Apr 2011)
 - a two-term differential calculus course for students not meeting the prerequisites of regular one-term course.
- Data from
 - o pre- and post precalculus diagnostic (Sept and Mar)
 - Mathematics Attitudes and Perceptions Survey (MAPS)
 - study habit survey
 - course grades (assignments, workshops, tests, final grades)

Course load?

- Students taking 6 courses generally have lower grades throughout a two-term differential calculus course.
- More than 6 courses in a term → overloaded? However, these students attend workshops and submit assignments not less than others.

<6 in both terms: N = 113; \geq 6 in either term: N = 24

Did not take math for a long time?

Students who did not take a math course for more than a year performed worse in the beginning, but they can catch up in the second term.

<1 yr w/o math: N = 80; >1 yr w/o math: N = 61

Interest? Or... lack of interest?

 Lower-performing students tend to agree that the <u>lack of interest</u> is a significant factor that influences failure in math, much more so than higherperforming students.

	Top third (N=53)	Bottom third (N=39)
% respondents	58%	85%

However, not only they lack the interest in math, they actually tend to <u>avoid doing math problems</u> whenever possible.

	Top third (N=33)	Bottom third (N=25)
% respondents	18%	64%

Why avoiding math?

- A few statements in the attitudinal survey highly correlated with the avoidance of math may give us some clues.
 - Q1: I study math to learn things that will be useful in my life outside of school.
 - Q2: Learning math changes my ideas about how the world works.

Q3: I can usually figure out a way to solve math problems.

% respondents agree	Top third (N=33)	Bottom third (N=25)
Q1 (usefulness)	48%	12%
Q2 (applicability)	63%	28%
Q3 (confidence/ability)	64%	28%

Completing assignments?

 Assignment submission rate correlates significantly with course grades (r = 0.47 with final exam, 0.66 with final grades)

High submission rate: N = 78, >89.3% of asmts submitted; Low submission rate: N = 75, <77.8% of asmts submitted

When do they start their assignments?

- Higher-performing students report starting their assignments earlier than lower-performing students.
- Are they simply more engaged?

Study techniques? Effective?

 Things higher-performing students do more when studying math – *Practice*

	% respondents <u>usually</u> do	
	Top third	Bottom third
# responses	53	39
Redo assignment problems	58%	28%
Rework sample problems before reading solutions	66%	47%
Do practice problems other than those assigned	64%	46%
Try to explain to someone else	38%	15%

Top third: final grade > 74%, Bottom third: final grade < 61%

Study techniques? Ineffective?

 Things higher-performing students do less when studying math – Review existing materials

	% respondents <u>rarely</u> do	
	Top third	Bottom third
# responses	53	39
Transcribe notes/textbook into personal notes	60%	44%
Study solutions of sample problems without trying first	70%	31%
Study with friends	43%	23%

Top third: final grade > 74%, Bottom third: final grade < 61%

Seek help?

- Higher-performing students tend to visit office hours much more than lower-performing students.
- The same trend is not observed for drop-in tutorials.

Top third: N = 53, final grade > 74%; Bottom third: N = 39, final grade < 61%

Seek help? Why not?

Weaker students who don't go to office hours claim that the main reason is time conflict.

	Top third	Bottom third
% respondents don't go to office hours because of <u>time conflict</u>	29%	65%

Top third: N = 28, final grade > 74%; Bottom third: N = 34, final grade < 61%

They also say that they don't go to drop-in tutorial because of the inconvenience of location, the crowdedness and the long waiting time.

	Top third	Bottom third
% respondents don't go to drop-in tutorials because of inconvenience	30%	59%

Did we mention gender?

 Gender <u>doesn't</u> seem to influence student performance in UBC 1st year math courses.

Summary

We have identified a few factors (demographic, psychological and behavioural) that might influence student performance. These factors could provide instructors some insights on the perceptions towards math lower-performing students may have and what type of advices these students may benefit from. Further analysis with course grades and surveys will be done.

What Might Affect Student Performance in a Math Course