
Introducing Pair Programming in Intermediate C to Non-Specialists
Chris Thompson and Edwin M. Knorr (h5c7@ugrad.cs.ubc.ca / knorr@cs.ubc.ca)

Department of Computer Science, University of British Columbia

BACKGROUND AND MOTIVATION

Electrical and Computer Engineering (ECE) asked Computer Science

to develop and deliver a mandatory second-year intermediate C

programming course for electrical engineering students who are not

in the computer engineering specialization:

• 2 credits (26 lecture hours and 15 lab hours)

• Intermediate procedural C programming techniques

• Fundamental algorithms and elementary data structures

• Introduction to scripting by invoking and using a locally

installed MATLAB engine from C

We developed CPSC 259: Data Structures and Algorithms

for Electrical Engineers during the summer and fall of 2011.

KEY GOALS FOR CPSC 259 LABS

1. Reinforce course learning goals

2. Inculcate effective and industry-

acknowledged software development

habits and methodologies

3. Foster peer instruction and collaboration

while mitigating plagiarism

4. Engender student programming

competence and confidence

5. Promote quick team-building

Agile Software
Development

Active Learning

Collaboration and
Engagement

Problem-Based
Learning

A SOLUTION: PAIR PROGRAMMING

PAIR PROGRAMMING is a popular software technique in which

two programmers are seated together at one workstation.

One programmer (the DRIVER) types, and the other

programmer (the NAVIGATOR) performs quality control, helps

point out errors (e.g., misspelled variable names, undeclared

variables, out of bounds conditions), gets a better

understanding of how the code fits together, etc.

The programmers switch roles on a regular basis.

PAIR PROGRAMMING is a key component of Agile Software

Development, which advocates iterative development, rapid

and flexible responses to change, and lots of collaboration.

PAIR PROGRAMMING IN CPSC 259

• We generated 5 two-part labs for the course:

1. An in-lab section in which students work together but earn some marks

separately

2. A take-home section in which students work together and earn a

common group mark

• We implemented a PAIR PROGRAMMING requirement in the CPSC 259 labs:

1. Students choose their own partners, and may not work alone

2. Students choose a new partner for each lab

3. Students work with the same partner for both the in-lab and the take-

home components of each lab

4. Students are graded for their pair programming performance

• Remembering to trade roles

• Working together effectively, inside and outside the lab

Improved
Productivity

Improved
Confidence

Faster Feedback

A METRIC FOR SUCCESS: FEEDBACK FROM STUDENTS

We surveyed the students at the end of the inaugural offering (January – April

2012) of CPSC 259:

Current work: During the second offering, we are collecting more data about

pair programming and the challenges facing students in such a lab environment.

CHALLENGES AND LOOKING AHEAD

1. How can we monitor the teams in the lab in order to determine

that they are PAIR PROGRAMMING correctly and effectively?

2. How do we teach students to actively manage and nurture their

partnerships?

3. How should pairs be assigned?

2. How do we manage partnerships that “just don’t work”?

3. How do we help students clarify and respect the differences

between cooperation, collaboration, and plagiarism?

We are employing three Teaching Assistants in each lab to provide

faster and more accurate feedback (the usual CS complement is 2

TAs per lab). Are there effective alternatives?

We generated explicit and detailed PAIR PROGRAMMING guidelines

for students and provide reminders and suggestions about how to

work together effectively during each lab and during office hours.

We decided to permit students to choose a new partner from their

own lab section for each lab. Are there alternatives that will

improve student success? For example, should we pair strong

students with strong students? Weak students with weak

students? Strong with weak? Permit students to work with anyone

they wish, as often as they wish?

Sometimes a partnership just doesn’t work due to issues of:

personality, availability, communication, etc. We actively manage

these (rare) challenged teams on a case-by-case basis, but

because we usually don’t learn about the issues until well into the

lab cycle, our best advice has been to continue and complete the

lab solo. Are there more effective and constructive team

management strategies that are appropriate for CPSC 259?

SUMMARY

CPSC 259 is nearing the end of its second offering. We are

employing PAIR PROGRAMMING in the lab component of the course

in order to:

• Introduce students to industry-acknowledged agile software

development

• Foster peer instruction, collaborative learning, and faster

feedback from instructors.

Developing CPSC 259 has been an iterative process. How can we

respond to student performance and improve the next iteration?

This work is supported in part by:

