
MECH 222 Computer Lab 1—Point Clouds

Read and understand the briefing notes and lab instructions before your lab period.

Each lab activity corresponds to one of the main ideas in the briefing notes.

Learning Objectives Doing this lab should be fun. The activities are designed
to sharpen your skills and understanding in three important areas.

• Matlab: You will practice writing Matlab loops and functions. The modular
approach makes your work easier to debug and reuse. You will meet the useful
load function (but not its partner, save). You will get a chance to learn and
deploy a favourite trick of Matlab power users: “vectorization.” And you will
start playing with Matlab’s system of handle-graphics.

• Mathematics: You will have a real-life encounter with the abstract-sounding
idea of splitting a complicated problem into many small pieces, doing something
simple with each piece, and then reassembling the results to solve the original
problem. You will see real physical meaning emerge from dot products involving
vectors having over 10,000 components!

• Engineering: The context for all this is the familiar world of fundamental me-
chanical and kinematic quantities like total mass and centre of mass.

PRE-LAB ASSIGNMENT Hand in the requested items at the beginning of the
lab, but keep a copy for your reference during the session.

PL0. Read the briefing notes. All of them. Before the lab starts.

PL1. Three point masses are given, with coordinates in meters and masses in kilo-
grams shown below:

k xk yk zk mk

1 1.1 1.2 2.2 3.0
2 0.0 0.0 0.0 5.0
3 −2.3 4.5 0.8 2.2

Find the centre of mass for this three-mass system.

PL2. Do this by hand, without relying on the computer! Write down the Matlab
vectors u = [1;2;3;4] and w = [2,1,2,1] in matrix form. (The point: u and w have
different “shapes”.) Then calculate both the matrix-matrix products that Matlab
would denote by u*w and w*u. (The point: both products are well-defined operations
with predictable results, but those results are dramatically different.)

DAILY SPECIALS The downloadable files pointcloud_DDD.mat and wirenodes_DDD.mat

used in the main lab activity are different each day. Replace DDD with the 3-letter
code for your assigned lab day as you read the instructions below.

File “todo1”, version of 17 Jan 2011, page 1. Typeset at 21:09 January 17, 2011.



2 PHILIP D. LOEWEN

ACTIVITY 1: Calculate the mass and centre of mass for a given cloud of points.

1.0 Copy the file pointcloud_DDD.mat from the web into your current working direc-
tory. Then, in Matlab, enter the command load pointcloud_DDD at the prompt.
This will create four vectors x, y, z, m like the ones illustrated in Prelab item 1.
Assume that the coordinates are given in meters, and the masses are given in
kg. Check that the vectors have been loaded correctly by looking in Matlab’s
workspace browser or giving the command whos.

1.1 Enter the command plot3(x,y,z,’r.’) to produce a 3D plot with a red dot at
each point mass location. Also say axis equal, to display the cloud with accurate
proportions. Add axis labels and a title to your plot; include your name in the
title. Use the tools in the plot window to inspect the cloud from all sides and to
choose a view that looks good in a snapshot. [Health Advisory: If you think you

see meaningful shapes in the cloud, it may be a sign that you have been working

extremely hard lately. If this is a problem, talk to a trusted friend or—in extreme

cases—to a member of the instructional team. But finish your lab first.]

1.2 Find N , the number of points in the cloud. (Hint: help length.)

1.3 Find the total mass of the points in the cloud, namely,

mTOT =
N∑

k=1

mk.

(The briefing notes outline two approaches, one using a for-loop, one using a dot
product. Either choice is acceptable, provided it works!)

1.4 Find the centre of mass for the cloud, namely, rCM = (xCM, yCM, zCM), where

xCM =

∑
N

k=1
xkmk

mTOT

, yCM =

∑
N

k=1
ykmk

mTOT

, zCM =

∑
N

k=1
zkmk

mTOT

.

1.5 Repackage your work into a function named mcm_cloud, so that the following
three commands will quickly calculate all the elements requested above:

clear;

load pointcloud.mat

[m_tot,x_cm,y_cm,z_cm] = mcm_cloud(x,y,z,m);

(Remember the difference between a function and a script : it’s a function we
need here.) For full credit, do not use the Matlab functions sum and dot. For
extra respect and possible bonus points, don’t use a for-loop either.

Hand-in Checklist :

⊓⊔ A printed copy of your function mcm_cloud.

⊓⊔ The picture of your point cloud from item 1.2.
WARNING: Various naive approaches to this job lead to disaster. Do not simply
select “File → Print” in the Figure window. Do not try to Copy/Paste the figure
into a Word document. The figure contains such a huge number of points that

File “todo1”, version of 17 Jan 2011, page 2. Typeset at 21:09 January 17, 2011.



MECH 222 Computer Lab 1—Point Clouds 3

these simple-sounding operations take nearly forever. Do this instead : activate
the Figure window and choose “File → Save As . . .” from the menus. Save your
figure as a file of type “Portable Network Graphics file”, suffix png. Then use
some program other than Matlab to manipulate and print your png file. (There
are many choices. Even Internet Explorer can do it.) This works because the
png file ignores thousands and thousands of points that make no difference to
the visual appearance of the image.

⊓⊔ The computed values of N , mTOT and rCM.

ACTIVITY 2: Find the mass and centre of mass of a wire with variable density.

2.0 Copy the file wirenodes_DDD.mat from the web into your current working direc-
tory. Then, in Matlab, enter the command load wirenodes_DDD at the prompt.
This will create four vectors x, y, z, rho, as described in the Briefing Notes.

2.1 Immediately throw away most of the data in these four vectors to produce much
smaller datasets for testing and development. To do so, enter these commands:

N = length(x), skip = round(N/10)

x = x(1:skip:N); y = y(1:skip:N); z = z(1:skip:N);

rho = rho(1:skip:N);

N = length(x)

These steps overwrite the vectors loaded in step 2.0 with new ones having about
10 elements. Use these in stages 2.2–2.5 below.

2.2 Say plot3(x,y,z) to produce a 3D plot showing the approximate wire. Say axis

equal to set the proportions, then hold on to allow you to overlay additional
elements later. Label the axes on the plot and add a title that includes your
name.

2.3 Figure out how to approximate the test-wire with a cloud of point masses, using
one point for each segment that joins two nodes. Choose the mass and location
of the point as discussed in the briefing notes. Represent the desired cloud in
the usual way—that is, in three column vectors containing the coordinates and
one column vector containing the masses. (Be smart: invent new variable names
to hold the new information!)

2.4 Overlay the plot in item 2.2 with the cloud of point masses just calculated. Use
a distinctive and highly visible symbol for the points. Hand in a copy of the
resulting figure.

2.5 Repackage your work from step 2.3 to define a new Matlab function named
mcm_wire. This function should return the wire’s total mass and CM coordinates
when you say

[m_tot,x_cm,y_cm,z_cm] = mcm_wire(x,y,z,rho);

Report the output of this function on the low-res test copy of the wire. (Hint:
Step 1.5 provides a function that can find the mass and CM coordinates for any
given cloud of points. So your new mcm_wire can outsource its final calculations

File “todo1”, version of 17 Jan 2011, page 3. Typeset at 21:09 January 17, 2011.



4 PHILIP D. LOEWEN

to that existing function. All it has to do is generate the cloud of CM points and
segment masses from given wire nodes and densities, then give these to mcm_cloud

for processing.)

2.6 Clear all variables from your workspace and repeat step 2.0 to reload the full-
length vectors in wirenodes_DDD.mat. Repeat Step 2.3 to show a much more
detailed graphic of the wire. Then apply your function from Step 2.5 to deter-
mine the wire’s mass and centre of mass.

2.7 Even without the given density information, the list of points (xk, yk, zk) is
enough to describe a curve in space. Invent an efficient way to find the centroid
coordinates and total length of a such a curve using work you have already done.
Package it as a function named curve_facts, which works when you say

clear;

load wirenodes_DDD

[len,xbar,ybar,zbar] = curve_facts(x,y,z)

(Hint : Get mcm_wire to do most of the work.) Find and submit the curve facts
for the high-resolution wire loaded in step 2.7.

Hand-in Checklist :

⊓⊔ Printed copies of your functions mcm_wire and curve_facts.

⊓⊔ A picture of the low-res wire overlaid with the computed point cloud.

⊓⊔ The computed values of mTOT and rCM for the low-res wire.

⊓⊔ A picture of the high-res wire (no overlay required).

⊓⊔ The computed values of mTOT and rCM for the hi-res wire.

⊓⊔ The computed length and centroid coordinates for the hi-res wire.

ACTIVITY 3: Automate an artist at work.

3.0 Copy the file artist3.m from the web into your current working directory. This
file contains the first few lines of the function you will build in this activity. The
steps below illustrate “incremental program development.”

3.1 Clear your Matlab workspace and reload wirenodes_DDD as outlined in Steps 2.0–
2.1 above. Modify the instructions in Step 2.1 to extract subvectors of x, y, and
z having length around 720.

3.2 As given, the function artist3 creates a classic 3D viewport automatically scaled
to contain the daily wire image. Run it. Then, working at the command
prompt, figure out how to draw a big dot of your favourite colour at the point
(x(1),y(1),z(1)). Just drawing a dot is easy:

dothandle = plot3(x(1),y(1),z(1),’.’);

This assignment gives you access to the “handle” of the dot as a graphic object.
You can see a list of all your dot’s properties using the command get(dothandle).
The properties of particular interest are named MarkerSize and Color. Use com-
mands of the form set(dothandle,...) to adjust these to your liking. Once

File “todo1”, version of 17 Jan 2011, page 4. Typeset at 21:09 January 17, 2011.



MECH 222 Computer Lab 1—Point Clouds 5

you have this working, add commands to the file artist3.m so that the function
builds the dot you want.

3.3 Extend artist3.m further by adding a for-loop that moves your dot from its
initial point to the next node, then the following node, and eventually all the
way along the wire. The key actions in the loop will be updating the dot’s
location by modifying the properties named XData, YData, and ZData, and then
refreshing the picture on the screen by giving the command drawnow.

The speed of your computer will influence how fast it takes to issue several
hundred drawnow commands. If your computer is slow, extract subvectors with
fewer elements in Step 3.1. If the picture goes by too fast to see anything,
either use more elements instead or insert a command like pause(0.03) into the
body of your for-loop. Choose the pause duration that gives a pleasant viewing
experience.

3.4 Extend artist3.m further by drawing a line segment from the dot’s starting
point to its next point in every iteration of the for-loop from Step 3. Now the
command-line input

close all; artist3(x,y,z);

should produce a little movie in which the dot represents the tip of an artist’s
paintbrush as it draws a single line that grows into a pretty picture.

To get this marked, print a copy of your completed file artist3.m and ask the
Lab TA to watch your movie and initial your printout as confirmation that the
movie works.

Hand-in Checklist :

⊓⊔ A printed copy of your function artist3.

⊓⊔ Your TA’s signoff that your movie displays correctly.

OPTIONAL BONUS ACTIVITY 1: Vectorize your functions.

Rewrite each of the functions in Activities 1 and 2 so that no for-loops appear.
Functions mcm_cloud and curve_facts are easy; mcm_wire will be a challenge. If you
succeed, just swap the high-value versions of your functions into the hand-in package
recording your work on the original activities.

OPTIONAL BONUS ACTIVITY 2: Make a roller-coaster.

Taking inspiration from artist3, write a function coaster3 so that the command
coaster3(x,y,z) will show a curve in light colour and animate the progress of a 10-
car train made of dots moving along the track from beginning to end. Play around
having other good ideas. Share these with the Lab TA or the instructor responsible
for the Computer Labs.

File “todo1”, version of 17 Jan 2011, page 5. Typeset at 21:09 January 17, 2011.


