
Briefing Notes — Thermodynamic Surfaces

Supporting Material for MECH 222 Computer Lab 4

Motivation. Engineering thermodynamics is a powerful real-world example of what can be accom-
plished when practical insights and advanced mathematics come together. A great way to build
a gut-level understanding of basic thermodynamics and to make the general tools of multivariable
calculus come alive is to explore thermodynamic property surfaces. In this computer lab, you will
use Matlab and teamwork to help build your own thermodynamic property surface. This solid
object, hacked together by cutting shapes from foamboard and taping them together, could be a
great aid to the imagination as you work on other surfaces or think more deeply about these specific
ones. The ability to imagine curves, surfaces, and solids in 3D is a core skill for a working engineer,
and this lab will help you develop it.

IDEA 1: Two Properties Determine the State

For a simple compressible pure substance, everything about the thermodynamic state can deter-
mined by setting just two properties: one extensive property (normalized by mass to give, for
example, v, s, or u), and one other property (either intensive or extensive). You get to choose
which two properties to treat as the independent variables, and then all the others will be functions
depending on them. For example, you might choose specific volume v and pressure P as the inde-
pendent properties. Then temperature T = T (v, P ), specific internal energy u = u(v, P ), entropy
s = s(v, P ), and all sorts of other properties become functions of the variables v and P . The graph
of any such function is a surface in 3D. By now you are familiar with “the PvT surface”: you can get
this as the collection of points (P, v, T ) in which the third component, T = T (v, P ), is determined
by the first two. [This surface gives a nice visualization for computing the reversible boundary work
by integrating δw = P dv.] Alternatively, you could choose v and T as the independent properties
that determine all the others, figure out the function P = P (v, T ), and generate the same PvT

surface by plotting all the points (P (v, T ), v, T ) generated by different choices of v and T .

A huge number of alternatives is possible—e.g., one could plot u = u(v, P ) as a function of v

and P and call the outcome “the Pvu surface”—but some choices are more practical than others.
Another engineering favourite is “the PsT surface”, in which we select entropy s and temperature T

as the independent properties and illustrate the functional dependence of the pressure P = P (s, T )
on these inputs. The PsT surface is “natural” because engineers often work with the T–s diagram,
which is simply a decorated contour map of the function P = P (s, T ) in the (s, T )-plane. The T–s
diagram is useful in understanding thermodynamic processes, partly because these independent
variables appear on the right side in

δq = T ds,

a key characteristic of a reversible process.

IDEA 2: A Tour de Force of Careful Experimentation

There is a big difference between a function and a formula. When we speak of pressure as “a
function of” temperature and entropy, we mean that for particular values of T and s, there is
exactly one corresponding value for P . Nature makes that true, but nature does not make it easy
to calculate P given (s, T ). Indeed, there is no simple formula for the properties of water and
steam; theoretical derivations based on fundamental concepts in Physics and Chemistry give only
approximations, whose scope is limited to certain extreme regions of the parameter space. So we
turn to experiments. The International Association for the Properties of Water and Steam (IAPWS)
negotiates, validates, and publishes approximate functions suitable for computer calculations. Of
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course the Association has a website, http://www.iapws.org/, and its main page offers a link to
“Releases and Guidelines”, where visitors can find the full text of the formulas we will use. In
detail, our work is based on the Revised Release on the IAPWS Industrial Formulation 1997 for

the Thermodynamic Properties of Water and Steam, dated 2007. This is a simplified version of the
IAPWS general theory intended for rapid computation. Insiders call the document by its friendly
name, IAWPS-IF97, or its nickname, IF97. In one of the simpler regions of the (P, T ) plane, where
the pressure is high and the temperature is low, so the water is a liquid well away from the critical
point, the state equation is expressed in terms of the specific Gibbs Free Energy g, as follows:

g(P, T ) = RT
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where R = 0.461526 kJ/(kgK), P ∗ = 16.53 × 106 Pa, T ∗ = 1386 K, and the coefficients ni, Ii, and
Ji are given to 14-digit accuracy in a large table. Knowing g makes it possible to calculate related
quantities like
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• specific entropy s = −
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• specific enthalpy h = g + Ts = g −
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)

P

.

Formula (1) is shown here mostly to impress you: our world is a complicated and beautiful place.
The IAWPS-IF97 report divides the (P, T ) plane into five regions, and gives a different impressive
formula in each one.

IDEA 3: A Public Good

The technical knowledge captured in IAPWS-IF97 and the other scientific documents on the
IAPWS web site is truly impressive. Figuring this stuff out took a lot of work from a large number
of very smart people. It’s wonderful that the results are freely available to anyone who wants to
use them.

Continuing in the stream of generosity, a number of people and organizations have translated
the formulas in IAPWS-IF97 into computer programs and online systems that are free to the public.
(Others have built systems to make money for doing the same thing; some folks do both.) On the
Web, the IAPWS-IF97 formulation is one of the options at

http://www.steamtablesonline.com/

Try it! Load that page and select the big red button labelled “Run Calculator”. Enter some
reasonable values for pressure (bar) and temperature (Celsius) and the page will rapidly calculate
and report all the main thermodynamic properties.

A free Matlab implementation of IAPWS-IF97 is also available, from

http://www.x-eng.com/

The package is called “X Steam”, by Magnus Holmgren. It’s good, but not perfect, so you will be
invited to use a recent local modification we call XSteamUBC.m. This is available for download from
Vista.
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IDEA 4: Basic Operations in XSteam

The single Matlab function XSteamUBC bundles together 82 thermodynamic functions, giving
them a unified format. For example, suppose you are interested in water at temperature 473.15 K
and pressure 22 Mpa. You can find the specific volume v and entropy s like this:

T = 473.15 - 273.15; % XSteam wants temperature in Celsius

p = 22.E6 / 1.E5; % XSteam wants pressure in bar

v = XSteamUBC(’v_pT’,p,T) % XSteam selection v_pT will return v=v(p,T)

s = XSteamUBC(’s_pT’,p,T) % XSteam selection s_pT will return s=s(p,T)

The wrapper function you call is always XSteamUBC. The first input argument is a character string
describing the desired output (here v or s) and the desired inputs (here p and T ). [All the IAPWS
documents use lower-case “p” for pressure.] The comments at the beginning of the file XSteamUBC.m
list all the functions provided and the symbols involved. Most of the variable names are standard.

Single-input functions work in the corresponding way. For example, to confirm that the point
where T = 200 C and P = 15.547 bar is on the saturation curve, you have two options:

% OPTION 1: Look up the pressure using a given temperature

Thot = 200; % XSteam wants temperature in Celsius

Phot = XSteamUBC(’psat_T’,Thot) % Returned value is in bar

%

% OPTION 2: Look up the temperature using a given pressure

MyP = 15.547; % XSteam wants pressure in bar

MyT = XSteamUBC(’Tsat_p’,MyP) % Returned value is in Celsius

NOTE: The functions in XSteam are not vectorized. Each one does a single calculation and returns
a single scalar value. To calculate property values for a long list of input points, you will need to
write some kind of a loop to treat one point at a time.

Useful XSteam functions. There are 82 functions built into XSteam. The short list of 25 shown
below mentions more than enough of these to get your work done in today’s lab.

% Tsat_p Saturation temperature

% T_ph Temperature as a function of pressure and enthalpy

% T_ps Temperature as a function of pressure and entropy

% T_hs Temperature as a function of enthalpy and entropy

% psat_T Saturation pressure

% p_hs Pressure as a function of h and s

% hV_p Saturated vapour enthalpy

% hL_p Saturated liquid enthalpy

% hV_T Saturated vapour enthalpy

% hL_T Saturated liquid enthalpy

% h_pT Enthalpy as a function of pressure and temperature

% h_ps Enthalpy as a function of pressure and entropy

% vV_p Saturated vapour volume

% vL_p Saturated liquid volume

% vV_T Saturated vapour volume

% vL_T Saturated liquid volume

% v_pT Specific volume as a function of pressure and temperature

% v_ph Specific volume as a function of pressure and enthalpy

% v_ps Specific volume as a function of pressure and entropy
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% sV_p Saturated vapour entropy

% sL_p Saturated liquid entropy

% sV_T Saturated vapour entropy

% sL_T Saturated liquid entropy

% s_pT Specific entropy as a function of pressure and temperature

% s_ph Specific entropy as a function of pressure and enthalpy

IDEA 5: Thermodynamic Contours and Surfaces

The mathematical theory of parametric curves offers a way to draw contours on thermodynamic
diagrams. Consider the famous T–s diagram on your formula sheet, where the horizontal axis shows
the interval of s values from 0 to 10 kJ/(kgK) and the vertical axis shows the temperature interval
from 0 to 800 C. You can draw any curve you like on these axes by choosing some parameter “t”,
specifying two functions that express the coordinates s = s(t) and T = T (t) in terms of t, and then
joining the points (s(t), T (t)) generated by varying t.

Isobars on a T–s diagram. An isobar is a curve of constant pressure. To draw an isobar on the
T–s diagram, we look for parametric definitions that link T and s with P . One option in XSteam

is T_ps. In mathematical notation, it gives us a function f such that T = f(P, s). A parametric
description of the curve where the pressure has some specified value P0 is then

s(t) = t, T (t) = f(P0, t), smin ≤ t ≤ smax.

The exceptionally simple form for s above suggests dropping the redundant letter t and using s

itself as the parameter. The isobar is generated simply by joining the points

(s, T (P0, s)), smin ≤ s ≤ smax. (2)

You could draw this in Matlab by defining a list of s-values with the linspace command, computing
a corresponding list of T -values using repeated calls to XSteam(’T_ps’,...), and then saying
something like plot(s,T).

Isobars on the PsT surface. To see the isobars just mentioned in 3D, at a height related to the
pressure involved, you would need to extend the parametric equation (2) above by adding a third
component to track the pressure. This choice will work:

(s, T (P0, s), P0), smin ≤ s ≤ smax. (3)

The space curve could be drawn with Matlab’s plot3 command, something like

plot3(s,T,p0*ones(size(s)))

Isenthalpic curves on a T–v diagram. An isenthalpic curve is a path along which the specific
enthalpy h is constant. To draw one on a T–v diagram (i.e., in the (v, T )-coordinate plane), we
need a parametric link between T , v, and h. Scanning the list of options available from XSteam

suggests v_ph and T_ph: if we select the reference value h0, we can use pressure as a parameter
and trace the curve defined by

v = v(p, h0), T = T (p, h0), pmin ≤ p ≤ pmax. (4)

You could draw this in Matlab by defining a list of p-values with the logspace command, com-
puting corresponding lists of v and T -values using repeated calls to XSteam(’v_ph’,...), and
XSteam(’T_ph’,...), and then saying something like plot(v,T).
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Isenthalpic curves on the PvT surface. To see the paths where h is constant stuck to the
PvT surface, we just need to track all three of the named variables. Equation (4) suggests the
parametric collection of points

(v(p, h0), T (p, h0), p), pmin ≤ p ≤ pmax. (5)

The space curve defined here can be drawn with a command like plot3(v,T,p).

Other Constant-Property Curves. On a T–s diagram, like Figure A-9 in your Thermodynamics
textbook, we are interested in three families of curves:

(i) constant pressure P (isobars);

(ii) constant specific volume v;

(iii) constant specific enthalpy h.

On the PsT surface, the curves of constant P are quite easy to visualize (they are horizontal slices),
but the curves in (ii) and (iii) remain interesting.

On a T–v diagram, we are interested in three families of curves:

(i) constant pressure P (isobars);

(ii) constant specific entropy s; and

(iii) constant specific enthalpy h.

On the PvT surface, the curves of constant P are quite easy to visualize (they are horizontal slices),
but the curves in (ii) and (iii) remain interesting.

IDEA 6: Logarithmic Scales

For plotting quantities whose magnitudes span a huge range, logarithmic scales are a good
choice. Matlab offers two styles of logarithm: log computes the natural, or base-e, logarithm,
while log10 computes the common, or base-10, logarithm.

The built-in command logspace generates vectors with logarithmically-spaced entries instead
of linearly spaced ones, and the common logarithm is used in the definition. Saying

x = logspace(-2,3,51)

will define a vector with 51 elements from 10−2 to 103.

When working with P , v, T , s, and h, the pictures look best if we use common-log scales for
P and v and simple linear scales for T , s, and h. This explains why these notes suggest linspace
for building a list of s-values for use in lines (2)–(3), but logspace for building a list of p-values
for use in lines (4)–(5).

IDEA 7: Who Does What (and Who Did What)

Each lab group will build a different surface, with an allocation matched with the name of
the famous thinker in the group’s title. After each group’s surface is assembled it will tour with
the group for their thermo tutorials. For example, Archimedes will have one of the two PvT

surfaces, and a tutorial might cover the “isentropic compressibility” of a substance. The isentropic
compressibility controls the speed of sound in a fluid, and it is directly related to the slope of the
surface as you ski Mount Water along an isentrope.

File “bn4”, version of 27 February 2011, page 5. Typeset at 12:39 February 27, 2011.



6 Briefing Notes — Thermodynamic Surfaces

Archimedes. Archimedes students will produce a PvT surface, on which several iso-enthalpy
contours will be drawn. Archimedes is famous for explaining the buoyant force on an object
immersed in a fluid. Buoyancy can be important for objects immersed in a gas (e.g., dirigibles),
but Archimedes more famously worked with liquid water, so you may have a special task involving
the liquid portion of the surface.

Bernoulli. The Bernoulli brothers were to Math and Physics what the Bach family was to music
(http://en.wikipedia.org/wiki/Bernoulli). It was Daniel Bernoulli who gave us the famous
equation describing frictionless flow of a fluid. This is a special case of isentropic flow, so Bernoulli
students will examine the PsT surface with isenthalpic contours marked on it. This surface will
be useful in your task of determining the change in velocity that must occur when a fluid expands
isentropically from high to low pressure.

Carnot. Carnot’s famous cycle is a rectangle on a T–s diagram. On the PsT suface, this cycle is a
more interesting space curve, as you will demonstrate. The letter C can also stand for “Clausius”,
who taught us how to determine the heat transferred in a reversible process by integrating T ds.

da Vinci. Da Vinci was the Renaissance man, capable of doing it all. One of the things he did
was design a steam cannon (http://en.wikipedia.org/wiki/Steam cannon), based on the idea of
rapidly heating a small amount of water injected into a preheated chamber (constant volume before
the projectile starts to move). In order to understand this device, it is critical to know the behaviour
of the function P(v,T), especially in the range from 1 < P < 400 bar and 100 < T < 600◦C. Some
MIT engineering students actually built a steam cannon. There are videos on YouTube.
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