
Briefing Notes—Engine Optimization

(c) UBC Vancouver, March 2011

IDEA 1: The Air-Standard Otto Cycle—Basic Theory

Overview. The Otto cycle is one way to transform heat energy into mechanical work. The following
very rough illustration will help us describe it.

V2=V3 V1=V4

P1

P4

P2

P3

1

2

3

4

Volume V, m3

P
re

ss
ur

e 
P

, N
/m

2

Cartoon distantly resembling the Otto cycle

Fig. 1: The Otto Cycle
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Fig. 2: Piston Geometry

Figure 1 suggests how pressure and volume evolve during the power stroke in one cylinder of a
simplified internal-combustion engine. The cylinder is sketched in Fig. 2. In state 1, θ = −π and
the piston is at “Bottom Dead Centre (BDC)”—the point where it leaves the maximum volume in
the cylinder. (Call that volume V1.) The cylinder is full of a fuel-air mixture. The piston in the
cylinder compresses the gas leading to state 2. This is the compression stroke. In state 2, θ = 0
and the piston is at “Top Dead Centre (TDC)”—the point where the volume in the cylinder (V2)
is smallest. Of course the corresponding pressure P2 is larger than the initial pressure P1. Then
the spark plug fires and a rapid chemical reaction transforms energy stored in chemical bonds into
kinetic energy of the gas molecules. The state jumps to position 3, where V3 is the same as V2

(the piston is still at TDC), but P3 is much higher than P2. Then the high pressure pushes on
the piston as it moves back out to its original position (BDC), now described with crank angle
θ = π. This is the power stroke. It brings the system to state 4, where the enclosed volume V4 is
the same as the initial volume V1. Of course the pressure in the cylinder, P4, is higher than the
initial pressure P1 because the gas has higher temperature. To get back to state 1, ready to repeat
the cycle, real engines make a whole extra revolution to expel the combustion products from the
cylinder and replace them with a fresh fuel-air mixture. You can find a more detailed description
on Wikipedia (en.wikipedia.org/wiki/Four-stroke_engine), and a nice animated diagram at
http://www.animatedengines.com/otto.shtml.

Air-Standard Assumption and Other Idealizations. This lab deals only with the compression
and power strokes, so the transition sequence 1 → 2 → 3 → 4 highlighted in Fig. 1 will be our
exclusive focus. Combustion is too complicated to deal with in detail, so we assume the cylinder
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2 Briefing Notes—Engine Optimization

actually contains nothing but air (k = 1.4), and model the transition 2 → 3 as the instantaneous
addition of some known amount of heat energy to the air by some unspecified process. These

simplifications characterize the “air-standard” model. To get started, we will assume further that
the cycle starts at standard atmospheric pressure P1 = 101 kPa and temperature T1 = 333 K.
The mass of air in the cylinder, say m, stays the same throughout the process, so the following
pressure-volume-temperature relationship is always in force:

PV = mRT. (1)

If there is no heat transfer between the gas and the cylinder walls or the piston, the compression
(1 → 2) and expansion (3 → 4) processes can be taken as adiabatic and reversible.

Thermodynamics. Two fundamental equations and one definition govern this process. The equa-
tions are the ideal gas law (1) and the First Law of Thermodynamics (simplified):

δQ = P dV + mCv dT. (2)

The definition is k = 1 + R/Cv, where R is the gas constant and Cv is the specific heat of the gas
we are using. This leads to a convenient form of the First Law where Cv does not appear explicitly:

δQ = P dV +
mR

k − 1
dT, i.e., dT =

k − 1

mR
[δQ − P dV ] . (3)

In our scenario, the mass m in the cylinder is constant. Thus the gas law (1) implies

dP

P
+

dV

V
=

dT

T
.

We can replace the right side here using the First Law in form (3):

dP

P
+

dV

V
=

k − 1

mRT
[δQ − P dV ] . (4)

Here the combination mRT on the right side equals PV by (1), so we have the following important
relationship between pressure, volume, and heat content:

dP

P
=

k − 1

PV
δQ −

k

V
dV. (5)

In an adiabatic, reversible process, δQ = 0 and (5) reduces to a differential equation describing a
famous relationship between P and V :

1

P

dP

dV
= −

k

V
. (6)

In Fig. 1, the transition from state 1 to state 2 should follow a path compatible with (6); likewise
for the transition from state 3 to state 4. The true paths are not straight lines!

In any reversible piston-moving scenario, the mechanical work done by the gas on the outside
world is

W =

∫

dW =

∫

P dV. (7)

This is a “line integral”, so orientation matters. In the transition from state 1 to state 2, dV < 0
leads to a negative result: this makes sense because it’s the compression stroke, in which the gas
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is receiving energy from outside. By contrast, in the transition from state 3 to state 4, dV > 0
and the contribution to W is positive because the gas is expanding and sending mechanical energy
to the outside. (In the idealized case of Fig. 1, where state 2 and state 3 have the same volume,
we have dV = 0 for the segment joining them. Since the piston doesn’t move, no work goes either
way.)

The efficiency of heat-to-work conversion along the path 1 → 2 → 3 → 4 is the ratio of work
output to heat input:

η =
W

Qin

,

where W is the work in line (7) and Q =
∫

δQ is the line integral accounting for heat addition.
Taken together, we can express efficiency as a ratio of line integrals:

η =
W

Qin

=

∫

P dV
∫

δQ

. (8)

IDEA 2: Crank Angle Parametrizes Everything

As the piston makes one cycle through compression, spark, and expansion, the crankshaft at
O keeps turning. Thus every point on the state-transition path 1 → 2 → 3 → 4 in Figure 1 is
associated with a specific crank angle θ in the mechanism shown in Figure 2. We can use this
variable to parametrize all the paths we need to analyze.

The volume in the cylinder as a function of crank angle θ can be found using standard geometric
reasoning (see the Appendix): it is

V (θ)

Vd

=
1

r − 1
+

1

2

[

1 + R1 − cos θ −

√

R2
1
− sin2 θ

]

. (9)

Here Vd is the piston’s displacement, R1 is a dimensionless ratio of link lengths in the piston
mechanism, and r is the dimensionless ratio of maximum to minimum volume in the cylinder.
Differentiating with respect to θ gives

V ′(θ)

Vd

=
1

2
sin θ



1 +
cos θ

√

R2
1
− sin2 θ



 . (10)

Angle θ = 0 gives the minimum gas volume, V (0) = Vd/(r − 1).

Heat addition is fast , but it can’t be truly instantaneous. So the constant-volume transition
between states 2 and 3 shown in Figure 1 is one of the model’s more aggressive simplifications.
Experts suggest that heat generated by combustion might actually depend on crank angle like this:

Q(θ) =

∫ θ

0

δQ =



















0, if −π ≤ θ ≤ θs,

Q

2

(

1 − cos

(

π(θ − θs)

θb

))

, if θs < θ < θs + θb,

Q, if θs + θb ≤ θ ≤ π.

(11)

Here we can see the constant value Q = 0 before the “spark angle” θs and the higher constant
value Q = Q for all angles after θs + θb. Here θb is the “burn angle”—the amount the crank turns
during heat addition; it is typically quite small, but not zero.
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These features are also visible in the derivative formula

Q′(θ) =



















0, if −π < θ ≤ θs,

πQ

2θb

sin

(

π(θ − θs)

θb

)

, if θs < θ < θs + θb,

0, if θs + θb < θ < π.

(12)

Here are figures showing the functions Q and Q′ for certain values of θs and θb; we take Q = 1800 J.
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Fig. 3: Heat input rate and total heat added, versus crank angle

The spark angle θs is an adjustable feature of most standard internal-combustion engines; the burn
angle θb can be influenced by chemical properties of the fuel-air mixture and by mechanical con-
siderations outside the scope of our work here. These two angles are important design parameters
for engine-makers.

Dividing the boxed equation (5) above by dθ produces a differential equation that reveals the
θ-dependence of the pressure P = P (θ):

dP

dθ
=

k − 1

V (θ)
Q′(θ) −

kP (θ)

V (θ)
V ′(θ). (13)

We already have detailed formulas for V (θ), V ′(θ), and Q′(θ), and we know the initial condition
P (−π) = P1. So we can use (13) to find P (θ) and draw all sorts of interesting conclusions. We will
use Matlab’s built-in ODE solver ode45 to do this job.

Summary. Using the crank angle θ as a parameter, the interval −π < θ < π captures all four
thermodynamic states in Figure 1. We have θ = −π in state 1, θ ≈ 0 for states 2–3 (often a poor
approximation), and θ = π in state 4. We get V (θ) from geometry (line (9)), Q(θ) by inventing
something plausible (line (11)), and P (θ) by solving a differential equation (line (13)). Once all
three functions are known, we can calculate the work done by the piston as

W =

∫

P dV =

∫ π

θ=−π

P (θ)V ′(θ) dθ (14)

and deduce the cycle’s thermodynamic efficiency

η =
W

Q
. (15)
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IDEA 3: Global Variables in Matlab

Here’s some of what Matlab has to say in response to “doc global”:

“global X Y Z defines X, Y, and Z as global in scope.

Ordinarily, each MATLAB function, defined by an M-file, has its own local variables,
which are separate from those of other functions, and from those of the base workspace.
However, if several functions, and possibly the base workspace, all declare a particular
name as global, they all share a single copy of that variable. Any assignment to that
variable, in any function, is available to all the functions declaring it global.”

In studying an engine prototype, the physical parameters of the engine are needed in every script
and function we create. To make it easy to apply the same tools to different configurations and
scenarios, it’s nice to have just one reference copy of each parameter, and to share it with all
functions that need it. (The alternative would require checking each occurrence of every parameter
in every script and every function, every time you wanted to adjust one!) Global variables are good
for this.

Global variables have disadvantages, too: if some function changes the value of a global vari-
able, all the other functions that use it will be affected. If the change was unwanted, it can be very
hard to figure out which one of all the functions currently active contains the error. Successful use
of global variables requires strict limits on where they are allowed to change, and clear identifiers
discouraging accidental overwriting. To help with this, it’s common to identify global variables as
special and draw attention to them somehow. This week’s plan is to put the prefix global_ on
each one. Then we agree to take special care whenever we change the value of a global variable: we
will use a dedicated script called to initialize all the global variables, and require almost all other
scripts and functions to only read, never overwrite, global values. The scripts supplied with the lab
follow this practice.

Notice that any script that wants to use a global value must declare its intent to use the
variable in the global storage region instead of creating a new local variable with the same name.
But to improve the readability of code, it can be nice to make local copies of the global values with
simpler names. The given files vdv.m and qdq.m illustrate this practice.

IDEA 4: Multi-Pane Plots in Matlab

Matlab’s subplot command provides an easy way to generate multi-pane plots whose horizontal
axes line up precisly. To set up a window with two plotting zones, one above the other, and aim
subsequent instructions at the top zone, say

subplot(2,1,1); (16)

All normal plot commands can be used, and they all apply to the top sketch in the two-pane figure.
To switch to drawing in the bottom zone, give the command

subplot(2,1,2); (17)

You can change the focus between zones whenever you like by re-entering one of (16) or (17).

This is all you need to know about subplot to complete this lab, but there is more to learn.
The online help (“doc subplot”) provides more information about this versatile command.
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Appendix: Piston Geometry

Consider the piston/crank assembly in Figure 2 of the main writeup. The crank pivots at the
origin.

x
RO

θ
a l

b

gas

For the angle θ shown here, the x-coordinate of the piston’s face is

x(θ) = a cos θ +
√

ℓ2 − a2 sin2 θ + b.

The extreme positions of the piston’s active face are clearly

xMAX = x(0) = a + ℓ + b,

xMIN = x(π) = −a + ℓ + b.

Here a is the length of the crank arm, and the piston’s “stroke” is 2a. If A denotes the area of the
piston face, then the volume of the region the piston face moves through in each cycle, called the
“displacement”, is Vd = 2aA. Suppose the top end of the piston chamber is at location xR. Then
the extreme volumes inside the chamber will be

V0

def
= VMIN = A(xR − xMAX) = A(xR − b − a − ℓ),

VMAX = A(xR − xMIN) = A(xR − b + a − ℓ).
(∗)

The standard name for VMIN is the “clearance volume”; the standard symbol is V0. Hence

VMAX = V0 + Vd.

Piston experts work with two dimensionless ratios:

R =
ℓ

a
, r =

VMAX

VMIN

=
V0 + Vd

V0

.

Note that r − 1 = Vd/V0. The volume ratio between enclosed volume and piston displacement is

V (θ)

Vd

=
A(xR − x(θ))

A(2a)
=

1

2a

[

xR − b − a cos θ −

√

ℓ2 − a2 sin2 θ
]

=
1

2

[

xR − b

a
− cos θ −

√

R2 − sin2 θ

]

.

Solving for xR − b in (∗) gives

xR − b =
V0

A
+ a + ℓ = 2a

V0

Vd

+ a(1 + R).

Back-substitution yields

V (θ)

Vd

=
1

2

[

2
V0

Vd

+ 1 + R − cos θ −

√

R2 − sin2 θ

]

=
1

r − 1
+

1

2

[

1 + R − cos θ −

√

R2 − sin2 θ
]

.

In the main lab writeup, we write R1 instead of R for the length ratio, to avoid a notational collision
with the ideal gas constant.
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