
Briefing Notes—Freighter Parameter Estimation

(c) UBC Vancouver, March 2011

IDEA 1: Boat Physics

Recall the experimental setup detailed in Physical Lab 3. To simplify notation, let’s define

M = Mboat + Mcargo, . . . the total mass being dragged through the water, and

m = Mdrive, . . . the total mass of the pulley, platform, and driving weights.

(In most cases, M is significantly larger than m.) The manual for Physical Lab 3 explains why the
acceleration of the boat along the tank, denoted a, is given by

a =

(

2m

4M + m

)

g − 4

4M + m
Fdrag(v). (∗)

To save subscripts later, we will write F instead of Fdrag from here on.

Average Drag. Experts expect a drag force proportional to the square of the speed, so they
complete the specification of (∗) using the generic form below. It involves a scalar K > 0 not yet
known:

F (v) = Kv2.

To give F the correct units (Newtons) and to bring in some parameters related to the experiment
itself, we expand K in terms of some new dimensionless value C > 0:

F (v) = 1
2
ρCSv2. (2)

Here S is the wetted surface area of the boat (in m2) and ρ is the density of water. A precise
theoretical model for the boat’s motion will be available as soon as we know C, the “drag coefficient”.
Our goal here is to estimate C and related quantities, and then to compare the motion predicted

by (∗) with the motion measured in the tow-tank.

Rearranging line (2) gives

C =
2F (v)

ρSv2
. (3)

We can, in principle, evaluate C from any measured pair of speed v and force F (v). The steady-
state speed—call this vs—is a good choice for this, because the drag force F (vs) must match the
tension force in the tow line, and we know that. Details below.

In the Physical Lab writeup, plugging v = vs into (3) produces a value of C denoted there by
CD,avg. Matlab can help us estimate the value of C for an individual boat, and then to compare
the idealized motion calculated from (2) with the observed motion in the lab.

A Variable Drag Coefficient. Maybe we can match the measured motion of the boat better by
allowing the drag coefficient itself to depend on the speed. For example, instead of using a constant

C in equation (2), we might pick some exponent p and try a function of the form C = α + βvp.
The constants α, β, and p would be tuning parameters that we could adjust to help the theoretical
solution of (∗) match the data collected in the lab. With this form, the total drag force becomes

F (v) = 1
2
ρ[α + βvp]Sv2, (4)

and equation (3) says

C(v) = α + βvp =
2F (v)

ρSv2
. (5)

We can still evaluate the right side when v = vs, but now we can use the various steady speeds
vs from different towing experiments to find several values for the function C in (5). We can use
those to estimate α, β, and p.

File “bn5”, version of 03 March 2011, page 1. Typeset at 07:23 March 4, 2011.

2 Briefing Notes—Freighter Parameter Estimation

An Aesthetic Issue. The drag coefficient C must be dimensionless, so each term added to produce
it must be dimensionless. Parameter α is fine, but the term βvp offends against good taste because
it can only make sense if β carries the units of (m/s)−p. For reasons both aesthetic and theoretical,
it would be nice to replace this term with one like γ(v/

√
gL)p, where L is the length of the boat.

Knowing β would be equivalent to knowing γ, because g and L are known and

βvp = γ

(

v√
gL

)p

⇐⇒ β =
γ

(gL)
p/2

,

but γ has the advantage of being dimensionless. Weighing against this choice is the added com-
plication the dimensionless setup would create. For this occasion only, we have opted to put this
important general principle second and simplicity of matlab implementation first.

Reconciling Math with Engineering. Boat experts expect the drag force in (∗) to be a sum of
three velocity-dependent drag forces, as follows.1

Total Drag: F (v) = Ff (v) + Fs(v) + Fw(v), is the sum of

Form Drag: Ff (v) = 1
2
ρSv2

(

ACD

S

)

,

Skin Friction Drag: Fs(v) = 1
2
ρSv2

(

1.327
√

Re(v)

)

, where Re(v)
def
= L|v|/ν,

Wave-Making Drag: Fw(v) = 1
2
ρSv2

(

Cw(v)

)

, where Cw(v)
def
= 60

(

v√
gL

)p

, p ≈ 4.

Note that the Reynolds Number, Re, is actually a function of speed. For this experiment, it’s
probably a big number: using ν ≈ 10−6 m2/s, boat length L ≈ 0.5 m, and speed v ≈ 0.2 m/s,
we have Re = Lv/ν ≈ 104. Thus the denominator defining the skin friction drag contains the big
number

√
Re ≈ 102, and we might expect Fs to be negligible for this experiment. We will soon

make the approximation Fs ≈ 0 (or, informally, send Re → ∞)—although it might be smart to
double-check that this is reasonable at some point in our work.

Plugging the boat-builders’ drag formulas into line (5) juxtaposes the form for C(v) suggested
here with the form conjectured earlier:

C(v) = α + βvp =
2

ρSv2
F (v) =

ACD

S
+

1.327
√

Re(v)
+ 60

(

v√
gL

)p

.

These match pretty well if we consider the limit of Re → ∞ and admit some considerable uncertainty
in the reliability of the number 60 in the formulation of the wave-making drag. In fact, offline
conversations with the suppliers of function Fw suggest a huge willingness to negotiate not only
the precise value of that coefficient, but even the choice of exponent p. We propose to hold a little
contest between the choices p = 1, 2, 3, 4.

IDEA 2: Extracting Parameters from Terminal Velocity

In the lab, the boat accelerates from rest and rapidly reaches a speed at which the drag forces
balance the tension in the tow-line. In this case, the net force on the boat is zero, so it travels at a

1 These expressions assume v > 0. To get a sign that opposes the motion even when v < 0,
replace v2 with v|v| throughout.

File “bn5”, version of 03 March 2011, page 2. Typeset at 07:23 March 4, 2011.

Briefing Notes—Freighter Parameter Estimation 3

steady speed. Let’s call this speed vs. By definition, when v = vs we get a = 0: substitution in (∗)
reveals

F (vs) =
mg

2
.

Using this in line (5) gives

C(vs) = α + βvp
s =

mg

ρSv2
s

. (∗∗)

When p is known and we plug in the known experimental values, line (∗∗) turns into a linear
equation for the unknown parameters α and β. To make this clearer still, let’s rewrite it as

x + cy = b, where x
def
= α, y

def
= β, c

def
= vp

s , b
def
=

mg

ρSv2
s

. (‡)

Each towing experiment provides via (‡) the equation of a straight line passing through the point
(α, β) of the (x, y)-plane. We expect the intersection point to satisfy both α > 0 and β > 0.

Cargo Mass Influence. The boat’s wetted surface area S, projected frontal surface area A, and
effective length L should be the same for all three light-cargo trials, because nothing about the
boat changes. We can hope for some consistency between the equations labelled (‡) in this case,
and optimistically predict a meaningful intersection point (α, β).

Reloading the boat with heavier cargo will push it deeper into the water. Perhaps the values
of S, A, and L will change, and perhaps this will influence appropriate values for the values (α, β).
We suggest analyzing the two cargo regimes independently; later comparison of the outcomes will
be interesting.

IDEA 3: Overdetermined Linear Systems

Suppose p is known, e.g., p = 2. Imagine making n towing experiments with the light cargo setup,
calculating the coefficients, and generating n equations:

x + ciy = bi, i = 1, 2, . . . , n. (6)

Geometrically, each one describes a straight line in the (x, y)-plane. If the drag force postulated in
(4)–(5) is correct, each of these lines should pass through the point (x, y) = (α, β) we are looking
for. But in truth lines (4)–(5) are little better than wishful thinking, and if n > 2 the experimental
lines will not all go through the same point. We need some plausible way to predict a reasonable
point of approximate intersection. Matlab has a sensible approach built-in.

To set it up, we write the system (6) in vector-matrix form, taking n = 3 for simplicity:





1 c1

1 c2

1 c3





[

x
y

]

=





b1

b2

b3



 . (7)

Writing A for the coefficient matrix on the left and b for the column vector on the right, the Matlab
command A\b computes the “least-squares solution vector” for the overdetermined linear system
Ax = b. This is the best mathematical prediction of the point (α, β). (Read the help on the
backslash operator for a fuller explanation.) Please don’t use it without thinking, though: see
Idea 5, below.

File “bn5”, version of 03 March 2011, page 3. Typeset at 07:23 March 4, 2011.

4 Briefing Notes—Freighter Parameter Estimation

IDEA 4: Multi-Pane Plots in Matlab

Matlab’s subplot command provides an easy way to generate multi-pane plots whose horizontal
axes line up precisely. The numbering scheme is consistent with matrix labelling: to create a single
figure with mn sets of coordinate axes arranged in an grid having m rows and n columns, and then
to focus your drawing commands on the axes numbered p, say subplot(m,n,p). So if you want to
create a single figure with two plotting zones, stacked one above the other, and you want to draw
in the top zone, say

subplot(2,1,1); (†)

All normal plot commands can be used, and they all apply to the top sketch in the two-pane figure.
To switch to drawing in the bottom zone, just give the command

subplot(2,1,2); (‡)

You can change the focus between zones whenever you like by re-entering one of (†) or (‡). Say
help subplot if you need more details.

Sometimes you need to adjust the interval shown on the horizontal axis of the current plot.
You can read this interval into a 2-element vector by saying get(gca,’XLim’). Conversely, if you
want to insist that the horizontal axis runs from −2 to 17, put these limits into a 2-element vector
and use it as follows:

set(gca,’XLim’,[-2,17]);

The vertical axis can be interrogated and adjusted in the same way: just change XLim to YLim.

IDEA 5: Determination, Persistence, and Progress

You may find that the three lines described in Idea 2 don’t come anywhere near having a reasonable
intersection point, and the least-squares solution produced by Matlab’s backslash operator is just
nonsense. (For example, a solution with either α < 0 or β < 0 is simply unusable.) If this happens
to you, it’s time for some creative, but honest, fabrication. Just pick some reasonable positive
numbers for the (α, β)-coordinates of the intersection point and use them. This is sad, but it will
let you demonstrate some Matlab skills and keep making progress instead of getting stuck. Truth
in science is essential, though, so if you have to resort to simply making something up, you must
clearly say so in your lab writeup. (Being honest about bad data will not cost you any marks;
making stuff up and lying to conceal the fact will cost you many marks (and possibly your soul)!)

IDEA 6: Global Variables in Matlab

Here’s some of what Matlab has to say in response to “doc global”:

“global X Y Z defines X, Y, and Z as global in scope.

Ordinarily, each MATLAB function, defined by an M-file, has its own local variables,
which are separate from those of other functions, and from those of the base workspace.
However, if several functions, and possibly the base workspace, all declare a particular
name as global, they all share a single copy of that variable. Any assignment to that
variable, in any function, is available to all the functions declaring it global.”

In our boat study, the physical parameters of the boat are needed in every script and function we
create. To make it easy to apply the same tools to different configurations and scenarios, it’s nice
to have just one reference copy of each parameter, and to share that value with all functions that

File “bn5”, version of 03 March 2011, page 4. Typeset at 07:23 March 4, 2011.

Briefing Notes—Freighter Parameter Estimation 5

need it. (The alternative would require checking each occurrence of every parameter in every script
and every function, every time you wanted to adjust one!) Global variables are good for this.

Global variables have disadvantages, too: if some function changes the value of a global vari-
able, all the other functions that use it will be affected. If the change was unwanted, it can be very
hard to figure out which one of all the functions currently active contains the error. Successful use
of global variables requires strict limits on where they are allowed to change, and clear identifiers
discouraging accidental overwriting. To help with this, it’s common to identify global variables
as special and draw attention to them aggressively by giving them LONG NAMES IN CAPS. Then we
agree that no ordinary function will ever change the value of a global variable: we will use a special
setup script to initialize the global variables, and all other scripts and functions will only read,
never overwrite, global values. The scripts supplied with the lab follow this practice.

IDEA 7: Predicting motion with ode45

Here is a quick refresher on ode45, one of Matlab’s many built-in differential equation solvers.
The ODE in its name stands for “Ordinary Differential Equation,” and the 45 advertises the style of
algorithm used inside: the so-called “an explicit Runge-Kutta (4, 5)-formula”. A fuller introduction
to this command was provided in the Prelab for Computer Lab 4 of MECH 221. You can still find
that on Vista, if the short summary below is not enough.

To coax Matlab into solving the second-order scalar initial-value problem

ẍ(t) = a(x(t), ẋ(t)), x(0) = x0, ẋ(t) = v0,

we convert it to this first-order initial-value problem whose unknown is a column vector , namely
u(t) = (x(t), v(t)):

d

dt

[

x(t)
v(t)

]

=

[

v(t)
a(x(t), v(t))

]

,

[

x(0)
v(0)

]

=

[

x0

v0

]

.

This has the generic form of u̇(t) = F(t,u(t)), u(0) = u0, that Matlab’s function ode45 is designed
for. To put ode45 to work, you must define a function (possibly named F) that takes a scalar input
t and a 2-element column vector input u, so that F(t,u) returns the 2-element column vector
[u(2);accel(u(1),u(2))].

If you want to start your theoretically-ideal boat with initial position 0 and initial velocity 0,
then you should define the inital vector

u0 = [0; 0]

To track the boat from time 0 to time 35, you could define the vector variable Tint = [0,35].
The simplest solution command would then be

[TlistUlist] = ode45(@F, Tint, u0); (13)

In response, Matlab would return a column vector Tlist containing some number N times between
t0 and t1 and a corresponding N × 2 matrix you can interpret as a pair of 2 tall column vectors.
The first column, Ulist(:,1), lists the values of x at the times in Tlist; the second column,
Ulist(:,2) returns the computed values of v at the times in Tlist. In the basic form of line (13),
the number N and the precise times that end up in Tlist are chosen automatically by Matlab.
Typically they are not evenly spaced: Matlab has smart methods that position the nodes for the
best compromise between efficiency and accuracy.

To gain complete control over the list of times returned by ode45, decide in advance which
instants you are interested in. Create a vector MyTlist whose elements are the times tk at which

File “bn5”, version of 03 March 2011, page 5. Typeset at 07:23 March 4, 2011.

6 Briefing Notes—Freighter Parameter Estimation

you want to know the values of u(tk). Then simplyl use the long vector MyTlist instead of the
short vector Tint in line (13) above. That is, say

[TlistUlist] = ode45(@F, MyTlist, u0); (14)

The output vector Tlist should be a column containing an exact copy of MyTlist, so that the
corresponding columns in Ulist are the desired instantaneous values of u.

File “bn5”, version of 03 March 2011, page 6. Typeset at 07:23 March 4, 2011.

