Briefing Notes—Optimization by Hill-Climbing
Supporting material for MECH 222 Computer Lab 6

Summary. We explore two ways to approximate the maximum value of a given function.
First is exhaustive search, which is crude and slow, but effective in low dimensions. Next is
gradient-ascent, which is more efficient, more accurate, and extends easily to higher dimen-
sions.

‘ IDEA 1: Simple Search in One Dimension. ‘

Imagine a function f = f(x) of just one variable. Our job is to find the maximum value of f for
inputs in some given interval [a,b] = {z : a <z < b}. If a vectorized Matlab representation
of f is available as function f, we can locate the maximizer with an absolute error not larger
than 0.01 by evaluating f at many closely-spaced points and selecting the input that gives
the largest result. This takes just a few lines:

Xmesh = a : 0.01 : b; % Many x-values, separated by 0.01

Ymesh = f(Xmesh) ; % Calculate many y-values (f is "vectorized")

[ymax,k] = max(Ymesh); % Built-in function max works on vectors. See Idea 2.4.
xmax = Xmesh(k); % "max" reports the location of the largest entry in Y

disp(sprintf(’Max value is %5.3f, found at x=),5.3f’, [ymax,xmax]));

Please read the comments in the code above. The built-in function max makes everything work,
because it returns not just the largest component in a given vector, but also the location of
that largest component. The corresponding component in the vector of input-values contains
the desired z coordinate.

Take a moment to think about the following questions.
e What pictures could you draw to illustrate the process above?
e How accurate and efficient is this method?
e Could calculus be used to improve the results? How?

The last line in the block of code above provides a prototype for nicely formatted numerical
output. There is a brief discussion of how this works in Idea 4, below.

IDEA 2: Simple Search in T'wo Dimensions ‘

Now consider a scalar function f = f(x,y) with two input variables, defined on a solid
rectangle in (x,y)-space:

S =la,b] x[c,d] ={(x,y) : a<x<b c<y<d}. (1)

This writeup uses f(z,y) = (2y — y?)sin(z) and S = [0, 4] x [0,2], but the methods apply to
a whole rainbow of alternatives.

2.1. Computer evaluation. A mathematical function of two variables translates easily
into a Matlab function with two input arguments. Here is a three-line file named f.m that
encodes our sample function:

% F - Evaluate the given function of two variables

function z = f(x,y)
z = (2xy - y.72) .x sin(x);

Notice the vectorized operators and “.*”. These allow us to evaluate many f-values

with a single command: when X and Y are Matlab vectors or matrices with identical shapes,
the command z = £(X,Y) produces a new vector or matrix of the same shape. Each element
of Z contains the f-value of the inputs in the corresponding elements of X and Y.

W~

File “bn6”, version of 10 Mar 2011, page 1. Typeset at 22:42 March 10, 2011.

2 PuIiLiP D. LOEWEN

2.2. Meshes and Contours. The Matlab command meshgrid builds a rectangular grid of
evaluation points from prescribed nodes on the coordinate axes. Here’s how:

x=0:0.1: 2; % 20 subintervals; 21 nodes
y=0:0.1":4; % 40 subintervals; 41 nodes
[Xmesh,Ymesh] = meshgrid(x,y); % Create two matrices of shape 41-by-21

To display the mesh of evaluation points in the plane, say
figure(’Name’,’My Mesh Points’) % Open a new window for plotting

plot (Xmesh,Ymesh, ’k.’, ’MarkerSize’,8); 7% Use mesh matrices Xmesh, Ymesh found above

Matlab automatically scales both axes independently to produce a figure that nearly fills
the plot window. This often makes a perfectly square grid like ours look like the cells are
rectangular. To insist on proportional scaling for both axes, say

axis equal; % Enforce length ratio of 1:1 on both axes
hold on; % Optional: allow new plots to overlay this one

PLOT + CONTOUR => Contour Map for f [Loewen]

2.5

The Matlab command contour adds a contour map of f to the sketch:
Zmesh = f(Xmesh,Ymesh); % Calculate many z-values with a single command

contour (Xmesh,Ymesh,Zmesh) ;

Matlab finds the contours by doing linear interpolation between the function-values given
at the node points—the same method students still use to predict steam-table entries for
situations that fall in the gaps between situations given in the table. You can ask for 25
equally-spaced contours by inserting an optional argument:

contour (Xmesh,Ymesh,Zmesh,25) ;

Contour-counts other than 25 work the same say. Alternatively, you can replace the positive
integer 25 with a vector listing the function values whose contours you want:
z_vals = Zmesh(16,:); % Typical f-values including one near the max

contour (Xmesh,Ymesh,Zmesh,z_vals) ;

Reasonably close to the maximizing point, the contours are approximately elliptical. There
are good reasons for this: see Idea 4.3, below.

File “bn6”, version of 10 Mar 2011, page 2. Typeset at 22:42 March 10, 2011.

Briefing Notes—Optimization by Hill-Climbing 3
2.3. Meshes and Surfaces. The graph of f is a surface in (z,y, z)-space, defined as the
set of Cartesian triples satisfying z = f(z,y). We can sketch it using

figure(’Name’,’Graph of f’) % Open a new window for plotting
surf (Xmesh,Ymesh,Zmesh) ;

Saying surfc instead of surf will include a few contours, but there is no provision for specifying
which contours you want. Saying mesh instead of surf gives a wireframe picture of the surface.

SURF => Graph of f [Loewen]

2.4. Naive Maximization. Matlab’s built-in function max works on matrices as well as on
vectors. According to doc max, “If A is a matrix, max(A) treats the columns of A as vectors,
returning a row vector containing the maximum element from each column. ... [C,I] =
max(...) finds the indices of the maximum values of A, and returns them in output vector
1.” So for the matrix Z of values above, the command

[C,I] = max(Zmesh);

will produce a row-vector C containing the largest entry in each column and another row-
vector I that reports, for each column, which row contains the maximizer. We can find the
overall maximum value zmax by selecting the largest of the column-maxima; that number and
the index of the winning column j are given by

[zmax,j] = max(C);

The winning row will be i = 1(j). All in one block,

x=0:0.01 : 4; % 400 subintervals; 401 nodes
y=01:0.01: 2 % 200 subintervals; 201 nodes
[Xmesh,Ymesh] = meshgrid(x,y); % Create two matrices of shape 201-by-401
Zmesh = f(Xmesh,Ymesh); % Many evaluations of f packed into one line
[C,I] = max(Zmesh); % Find max in each column

[zmax,j] = max(C); % Find largest among column-maxima
i=TI(j); % Column j is best, and that selects row i
xmax = Xmesh(i,j); % x-coordinate of optimal input

ymax = Ymesh(i,j); % y-coordinate of optimal input
disp([’Maximum value of f(x,y) is ’,num2str(zmax)])

disp([’found when x = ’,num2str(xmax),’, y = ’,num2str(ymax)])

File “bn6”, version of 10 Mar 2011, page 3. Typeset at 22:42 March 10, 2011.

4 PuIiLiP D. LOEWEN

‘ IDEA 3: Gradients and Hill-Climbing

3.1. Computing Partial Derivatives. Given a function f = f(z,y) and a point of interest
(z0,Y0), the gradient V f(xg,yo) is the following two-component vector:

Vf(wo,90) = (fe(z0,90); fy(T0,v0)) -

The partial derivatives have definitions discussed in Math class. When f is well-behaved near
the point of interest, they enjoy the following additional properties:

f(xo+ h,yo) — f(xo — h,yo)
2h
f(x07y0 + k)2_kf(x07y0 - k) + 0(1{72)

+ O(h?) as h — 0T,

Jo(z0,90) =

as k — 0T,

Jy(xo,y0) =

Choosing specific small values of h,k > 0 and ignoring the error terms above provides a
usable approximation to the gradient. How small should these perturbations be? It depends
on the machine precision and the coordinates of the point of interest. For general use, we
want |h/zo| and |k/yo| to be around 1076. Since our inputs are around 1, we can choose
h=k=10"9.

3.2. Gradient Geometry. At each point (xg,yo), the vector V f(xg,yo) is perpendicular to
the contour of f through (z¢,yo). To illustrate this with a picture like the one below, give the
single Matlab command quiver (X,Y,U,V). Here the matrices X and Y provide the mesh-points
where certain vector arrows are to be drawn. The vector arrow at point (X (i,7),Y (4,7))
will be (U(4,7),V (i,5)), so we must set up for the quiver command by calculating appropri-
ate matrices U and V. (Here the plotting command axis equal is particularly important:
stretching one axis more than the other modifies the angles in the picture.) There is no
particularly elegant way to do this: a simple approach is to write two nested for-loops that
generate all (4, j)-pairs of interest and to work out U = f, and V' = f, at each point using
the formulas suggested in idea 3.1. Note, too, that the vector arrows may be too long or
too short to look good in your plot: after you build the matrices U and V, you may need to
overwrite them with m+xU and m*V before plotting, using some positive scalar m that you choose
to make the diagram especially clear.

PLOT + CONTOUR + QUIVER => Contours and Gradients for f [Loewen]
25¢

File “bn6”, version of 10 Mar 2011, page 4. Typeset at 22:42 March 10, 2011.

Briefing Notes—Optimization by Hill-Climbing 5

3.3. Hill Climbing Trajectories. At every point (z,y) where f is differentiable, the vector
V f(z,y) points in the direction of steepest increase for f. So one way to make steady progress
toward larger f-values is to imagine a point that moves in the (z,y)-plane in such a way that
its velocity is parallel to V f no matter where it is. This idea is captured by the system of
differential equations

dx dy
(555 =V 1a(0)00) = (olol0). (0. £ 00001). ()
Matlab’s ode45 command deals nicely with systems like this. Its model equation, shown here
using the traditional position-vector notation r = (z,y), is

r(t) = G(t,r(t)), r(tp) = ro.

To align this with (), we will need to create a file G.m that defines a function G(t,R). The
vector input R will provide the 2-element evaluation point for V f. The return value of G(t,R)
must be a column vector containing the components of V f(x,y) where R(1) = z and R(2) = y.
The scalar input t for ¢ remains unused when the function is evaluated, but it must be present
to match the structural expectations of ode45.

Any point where f has a local maximum will satisfy V f = 0. So this is a point where
the trajectories of equation (k) stop moving. We can expect the hill-climbing point particle
designed above to slow down as it approaches the desired maximizing point. If we run the
differential equation for long enough, we can take its final state as a good approximation
to the maximizer. Here are some commands to do this, assuming a suitable function G is
available:

interval = [0,20]; % Choose final time 20 (experiment)
startpt = [0,0]; % Launch hill-climber from (x,y)=(0,0)
options = odeset(’RelTol’,le-6,’AbsTol’,[1le-6 1le-6]);

[T,XYtraj]l = ode45(@gradf,interval,startpt,options);

The quantities returned by ode45 describe a list of points from a curve in the (x,y)-plane
parametrized by t. The t-values are listed in the column vector T, while the coordinates are
packed into the tall skinny matrix XYtraj. Individual coordinate evolutions can be extracted
using

Xtraj = XYtraj(:,1);

Ytraj = XYtraj(:,2);

To draw a map of the hill-climber’s path with a fat line in marvellous magenta, say
plot(Xtraj,Ytraj, ’m’,’LineWidth’,1);
A sample figure appears below.

Caution: This method completely ignores the set S specified in line (1) of Idea 2. If f has
only a local maximum in S and larger values elsewhere, our hill-climbing point can leave S
and take off on a long journey to higher values far outside the region of interest. Avoid this
by being aware of the possibility, and choosing initial points for which it doesn’t happen.
(Every method has its shortcomings, and this level of intervention is one of the undesirable
features here.)

3.4. Locating the Peak. The vectors T, Xtraj, and Ytraj all have the same number
of elements, which is determined at run-time by ode45. Saying N = length(T) will store
that number in the variable N so you can refer to it. If the hill-climbing idea succeeds, the
coordinates of the approximate maximizer will be =Xtraj (N) and y =Ytraj (N). (Failure is
indeed possible, especially if the time interval passed to ode45 is too short for the trajectory
to make its way to a critical point.)

File “bn6”, version of 10 Mar 2011, page 5. Typeset at 22:42 March 10, 2011.

6 PuIiLiP D. LOEWEN

... + ODE45 => Hill-Climbing on Contour Map [Loewen]

25¢
2 ‘:.xx\L\\!{
L P N SR U §
L R R
e~ S SNV
o ~ A
15 ...-::::\\\
fPee e~ SN\
e e e £ B e e R
aaaaaaa -
ottt s 00 o o p
oot r o o0 ppp
05 ey
R
[cArrrrr N
L “errrrrrl
eGrrrrr
-0.5¢
0 1 2 3 4

3.5. Another View of the Process. Paragraph 3.3 aboveshows a trajectory in the (z,y)-
plane that visits points with increasing function-values. Since f has just two input variables,
we can draw a different picture to see both the moving input point and the rising function
value. The key is to draw the graph z = f(z,y) as a surface in 3-space, and then overlay it
with the space curve generated by solving the differential equation (x): this is the parametric
curve where x = z(t) and y = y(t) are returned by ode45 and z(t) = f(x(t),y(t)) can be
calculated by our known function f. Matlab’s function plot3 draws curves in space. In this
alternative approach, the trajectory shown on the contour map in paragraph 3.3 produces
the following graphic:

SURF + PLOT3 => Hill-Climbing on Graph [Loewen]

IDEA 4: Beautifying Numerical Output

To translate calculated values into character strings, displaying the numbers with precise
formatting control, Matlab provides the function sprintf. It takes two inputs: a string
mixing plain text and formatting codes, and a vector of numbers to be plugged into the

File “bn6”, version of 10 Mar 2011, page 6. Typeset at 22:42 March 10, 2011.

Briefing Notes—Optimization by Hill-Climbing 7

formatting slots. The return value of sprintf is a Matlab string; we use disp to display it.
The last line in the code block of Idea 1 above illustrates this:

disp(sprintf(’Max value is %5.3f, found at x=),5.3f’, [ymax,xmax]));

The percent signs in the string show where numbers are to appear. Each one introduces
a string formatting code. Each number in the second input argument—here the vector
[ymax,xmax]—gets plugged into the format string in order. It’s best if the length of the
vector matches the number of format codes in the string.

The format code “%m.nf” reserves space in the output string for a floating-point rep-
resentation having n digits after the decimal point and occupying a total of m character
positions (or more, if it’s too big to fit). Other format codes are available. For example %3d
will give a 3-digit integer; %9.2e will give scientific notation with 2 decimal digits. Say doc
sprintf to see some details.

A related Matlab command is fprintf, which combines the operations of converting
numbers to strings and writing them to a file. If you omit the optional argument specifying
which file to write into, Matlab will write to the screen instead. The only extra thing to know
is that when you use fprintf instead of disp to write on the screen, you lose the end-of-line
character supplied automatically by disp. Instead, you have to include it in the format string
you give to fprintf, using the character code \n. A reasonable replacement for the line above
is this:

fprintf(’Max value is %5.3f, found at x=%5.3f\n’, [ymax,xmax]);

File “bn6”, version of 10 Mar 2011, page 7. Typeset at 22:42 March 10, 2011.

