
Briefing Notes — Point Clouds
Supporting Material for MECH 222 Computer Lab 1

IDEA 1: Mass and centre of mass for a cloud of point masses.

Theory. Imagine a cloud of N stationary point particles. We know the location and the mass of
each particle: particle number k, 1 ≤ k ≤ N , has coordinates (xk, yk, zk) and mass mk. The total
mass of all points in the cloud is a simple sum:

mTOT =

N
∑

k=1

mk.

The centre of mass coordinates for the cloud are (xCM, yCM, zCM), where

xCM =
1

mTOT

N
∑

k=1

xkmk, yCM =
1

mTOT

N
∑

k=1

ykmk, zCM =
1

mTOT

N
∑

k=1

zkmk.

To explain this, focus on the x-coordinate, and rearrange the equation above:

(mTOTg)xCM =

N
∑

k=1

(mkg)xk. (∗)

In this form, the parenthesized pairs like (mg) are forces, so force-distance products like (mg)x are
torques. Equation (∗) relates a single gravitational torque about x = 0 on the left to a sum of
gravitational torques about x = 0 on the right. The two match precisely when the x-value on the
left is xCM.

Matlab. The details about a point cloud can be expressed in Matlab using four N -element vectors,
x, y, z, and m: Matlab notation for the number xk would be x(k). To make Matlab draw the cloud
with a green × at each point of the cloud, say

plot3(x,y,z,’gx’);

(Say help plot3 or doc plot3 to read about other colours and marker shapes.) The built-in
Matlab command to compute the total mass is simply

m_tot = sum(m);

For a sum like

N
∑

k=1

xkmk, the mathematical notation is M{x=0} and the Matlab is

Mx0 = sum(x .* m);

Here the operator “.*” is the Matlab’s unique component-by-component extension of standard
matrix multiplication: x. ∗ m requires x and m to have the same shape, and it produces a new
matrix in which each entry is formed by multiplying the corresponding elements in the matrices x
and m.

File “bn1”, version of 17 January 2011, page 1. Typeset at 21:09 January 17, 2011.

2 Briefing Notes — Point Clouds

IDEA 2: Mass and centre of mass of a wire with variable density.

A segment of unit length. Imagine that the segment of the s-axis between s = 0 and s = 1 is
made of a wire whose density varies linearly from ρ0 at s = 0 to ρ1 at s = 1. Then a simple formula
for the density at location s is

ρ(s) = ρ0 + s(ρ1 − ρ0), 0 ≤ s ≤ 1.

The total mass m and centre of mass location sCM for that segment are then given by

m =

∫ 1

s=0

ρ(s) ds =

∫ 1

0

(ρ0 + s (ρ1 − ρ0)) ds = ρ0 + 1

2
(ρ1 − ρ0) =

ρ0 + ρ1

2
.

M{s=0} =

∫ 1

s=0

s ρ(s) ds =

∫ 1

0

(

sρ0 + s2 (ρ1 − ρ0)
)

ds =
1

2
ρ0 +

1

3
(ρ1 − ρ0) =

ρ0 + 2ρ1

6
.

sCM =
M{s=0}

mTOT

=
1

3

ρ0 + 2ρ1

ρ0 + ρ1

.

A segment in space. Imagine that a line segment in space joining two points r0 and r1 is made of
a wire whose density varies linearly from ρ0 at r0 to ρ1 at r1. With a suitable change of coordinates,
the calculation above applies. The segment’s total mass is its midpoint density times its length:

m =

(

ρ0 + ρ1

2

)

|r1 − r0|. (∗∗)

The position vector of the segment’s centre of mass has the same proportional distance along the
straight line from one end to the other as we obtained earlier:

rCM = r0 + sCM (r1 − r0) = (1 − sCM)r0 + sCMr1 =

(

2ρ0 + ρ1

3ρ0 + 3ρ1

)

r0 +

(

ρ0 + 2ρ1

3ρ0 + 3ρ1

)

r1.

(Note that rCM lands at the midpoint of the segment if and only if ρ0 = ρ1.)

A bent wire. Imagine a curved piece of wire, perhaps with variable density, in 3-dimensional
space. Suppose we measure N points along the wire: one end of the wire has location (x1, y1, z1),
the other end is at (xN , yN , zN). [All coordinates are measured in meters.] At the generic node
(xk, yk, zk), the wire’s linear density is ρk kg/m. Then our data about the wire can be packed into
four N -element vectors, x, y, z, and rho. For computational purposes, this is all we know about
the physical object. There is no hint in the data that our wire is anything more complicated than
an end-to-end concatenation of straight line segments joining the given nodes, with each segment

having linear density variations that take on the measured values at each endpoint . When we speak
of calculating properties of “the wire”, it’s the simplified object described in italics that we are
really working on. Figure 2 shows such an item, built to approximate the curve in Figure 1.

Fig. 1: Four nodes on a space curve Fig. 2: Four data points give this simple model

File “bn1”, version of 17 January 2011, page 2. Typeset at 21:09 January 17, 2011.

Briefing Notes — Point Clouds 3

To calculate the wire’s total mass and centre of mass, we can replace it with a suitable cloud
of points and use the methods described above. We just make one point for each segment: the
mass of the point is the total mass of the segment, and the location of the point is the centre of
mass location for the segment. We derived formulas for both of these ingredients in the previous
paragraph.

Notice that a wire with 4 nodes has only 3 segments. In general, a wire with N nodes will
have only N − 1 segments, so it will generate a cloud of just N − 1 points.

Mathematical Notation. Imagine the special case in which every straight-line segment along
the wire has the same length, say h. Then the wire has total length L = Nh, and the total-mass
approximation based on (∗∗) becomes (notice the upper limit on the sum!)

mTOT =
N−1
∑

k=1

(

ρk + ρk+1

2

)

h =
L

2N
[ρ1 + 2ρ2 + 2ρ3 + · · · + 2ρN−1 + ρN] .

Here we recognize a Trapezoidal Rule approximation for a certain integral! Standard math notation
for the continuous counterpart of the computation we are doing here is

mTOT =

∫

C

dm =

∫

C

ρ(x, y, z) ds.

This is a line integral of the scalar function ρ along the wire path C. The methods you apply in this
lab can be used to approximate any line integral with this mathematical form—even ones where
the function of interest does not represent linear mass density.

IDEA 3: Accumulators.

A mathematical expression like mTOT

def
=

N
∑

k=1

mk represents a single number, obtained by adding

the N numbers m1, m2, . . ., mN . A classic programmer’s idiom to evaluate such a sum uses an
accumulator—that is, a variable like subtotal in the Matlab segment below:

subtotal = 0.0;

for k=1:N

subtotal = subtotal + m(k);

end

Mtot = subtotal;

With minor changes in syntax, a construction like this works in most programming languages. It
is so fundamental that Matlab offers a built-in function called sum that reduces it to one line:

Mtot = sum(m);

That’s great, but this lab is supposed to stretch your math skills as well as your mastery of Matlab,
so Activity 1 explicitly prohibits the use of sum. The point is to force you to learn some of the
ideas in the next section.

IDEA 4: Matrix Interpretations—An Efficient Option

When Cleve Moler invented Matlab in the mid-1970’s, its name stood for MATrix LABoratory. The
idea was simple: powerful new computer packages for linear algebra (with Moler as co-developer)

File “bn1”, version of 17 January 2011, page 3. Typeset at 21:09 January 17, 2011.

4 Briefing Notes — Point Clouds

had just become available, but people could only use them by writing compiled programs in FOR-
TRAN. Moler built a command-line interface so that users could harness the computational power
of the new packages just by typing simple commands into a terminal. MATLAB worked like a
command-line desktop calculator whose basic data structure was a matrix instead of a scalar. The
basic arithmetic operations of +, -, * were defined to operate on matrices as the fundamental ob-
jects of interest. This idea was so powerful that it led to the foundation of the Mathworks software
company in the 1984, and now company co-founder and ex-Professor Moler is a deserving celebrity
in the world of scientific computation. The Matlab system has evolved considerably (with a new
emphasis on graphics and visualization), but the fundamental idea of using a matrix as the fun-
damental object of interest remains as wonderful as ever. It covers ordinary arithmetic involving
numbers because any scalar can be treated as a 1 × 1 matrix: all matrix calculations reduce to
ordinary arithmetic in this case. But for matrices of different shapes, the payoff is huge. Simple,

basic matrix calculations offer an escape from writing explicit loops.

Dot Products as Matrix Products. When u and v are column vectors in R
N , the definition

u • v =
N

∑

k=1

ukvk (†)

generalizes the sorts of expressions shown in Idea 1 above. What’s more, the scalar result shown
here can be interpreted as the 1×1 matrix resulting from the multiplying matrix uT , the transpose
of u (size 1 × N), by matrix v (size N × 1):

uT v = [u1 u2 u3 · · · uN]













v1

v2

v3

...
vN













= [u1v1 + u2v2 + · · · + uNvN] =

[

N
∑

k=1

ukvk

]

.

Matlab uses the single-quote to denote matrix transpose, so The Matlab Way to calculate the
sum in (†) is simply u′ ∗ v. This executes faster than an explicit loop with an accumulator be-
cause it puts less strain on the Matlab interpreter. In general, Matlab has to “think about” each
command it executes. In the explicit loop formulation, it has to decode and execute N simple com-
mmands. In the matrix-product alternative, the interpreter has to decode just one more powerful
command. The commands actually get executed by some speedy machine-language routines that
seem instantaneous in comparison with the interpreter’s speed. Using the loops implicit in matrix
multiplication instead of writing loops explicitly is an effective way to speed up Matlab scripts and
functions.

In the interests of full disclosure, we should mention Matlab’s built-in command dot: the
command dot(u,v) computes u′ ∗ v, but for mathematical emphasis we prohibit direct use of dot
in this lab.

Simple Sums as Dot Products. Dot products can be used to compute simpler sums. If m is a
Matlab vector containing point masses, the total mass it represents is

Mtot = ones(size(m))’ * m;

Figure out why this works. (Say help ones and/or help size if necessary.)

File “bn1”, version of 17 January 2011, page 4. Typeset at 21:09 January 17, 2011.

Briefing Notes — Point Clouds 5

Skepticism Always Justified. A great way for an Engineer to learn Matlab is to take it apart—or
at least to look at how it’s put together. The type command helps with this: it literally types out
the Matlab code underlying the command named in the argument. Many of our favourite Matlab
commands are actually little Matlab functions built up from a handful of truly primitive built-in
commands. Try saying type dot to see how the dot-product calculation is managed using some
of the ideas introduced earlier. To get really impressed, say type ode45. What is the response to
type sum?

IDEA 5 (OPTIONAL): Operating Element by Element

Students looking for bonus marks in the lab may find these ideas helpful.

When M is a Matlab matrix, the Matlab command sin(M) produces a new matrix with the same
shape as M, in which every entry is the sine of the corresponding element of M. This is another case
where lots of scalar calculations get done in response to a single command, because they are all
closely related in a way that can be expressed using matrix notation.

Dot-operations extend this idea. To get the cube root of every entry in a matrix M, say M.^(1/3).
If A and B are matrices with the same shape, say A.*B to build a new matrix with the same shape
in which every entry is the product of the corresponding elements of A and B.

Addition (+) and subtraction (-) operate element-by-element even without the dot. (In fact, trying
to use the dot prefix will trigger an error message.)

Some Matlab extensions offend mathematical standards. If M is a general matrix, the expression
M + 5 is undefined: you can’t add a scalar to a matrix. But if M is matrix in Matlab, and you
type M+5 into the interpreter, then Matlab will add 5 to each element of M and return the result.
It’s as if Mablab upgraded the single 5 into the matrix 5 * ones(size(M)) before calculating the
elementwise sum. An expression like M +5 would be a travesty on a Math test, but it can be quite
convenient inside a Matlab function!

Array Indexing. Suppose u is a Matlab vector. The notation u(2) for the second scalar element in
u is prosaic and predictable. But here is an extension that may be surprising: writing u([1,3,5])

builds a new 3-element vector with components u(1),u(2),u(5). To make new vectors from u by
dropping a single element from one end, say either

u_tail = u(2:length(u)); % Drop the first element.

u_head = u(1:(length(u)-1)); % Drop the last element.

File “bn1”, version of 17 January 2011, page 5. Typeset at 21:09 January 17, 2011.

