Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.

Physics 408: Optics (2014/15 Term 2)

Studying doesn't consist of devouring ideas, but of creating and recreating them.
- Paulo Freire

Course motto : "Breaking the rhythm that excludes thinking"

University education is be the opposite of indictronation in that you are expected to critically examine what you learn and what you think. Thus, we educate you not to so that you stop having "crazy" ideas and new dreams but so that you can learn to test and analyze those ideas on your own and eventually bring into some form of reality those dreams.

All email addresses on this webpage are indicated by listing the person's email (username) in parenthesis. The email address is then ""

Instructor: Prof. Kirk W. Madison (822-6356)

Instructor Access for questions / concerns
0) I am not available immediately following lectures. Please come to my office hours instead.
1) Please don't email me unless there is truly an urgent need - instead, please post your questions concerning the course/homework/etc... using the discussion forum/section on the course Piazza page.
2) For registration issues please contact Eileen Campbell (campbell) or Salena Li (ugcoord)
3) For all other matters (personal or otherwise), please visit me in person during my office hours
Office Hours = lab hours in Hebb basement TA room
4) For all issues regarding homework marks, please talk directly to Kahan Dare during the homework problem solving sessions

In-Class TA: Gene Polovy (gpolovy)
Homework TA: Kahan Dare (kahan)
Head Lab TA : Will Gunton (wgunton)
Monday Lab TA (PHYS 408 L2D, 14:00-17:00) Kais Jooya (jooyak)
Tuesday Lab TA (PHYS 408 L2A, 11:00-14:00) Emily Altiere (ealtiere)
Wednesday Lab TA (PHYS 408 L2B, 14:00-17:00) Kais Jooya (jooyak)
Friday Lab TA (PHYS 408 L2C, 14:00-17:00) Emily Altiere (ealtiere)
Lab Engineering Technician: Gar Fisher (gar)

Course Links

External Links

Course Home Page:
Instructor's Home Page:
UBC PHAS Courses


Course Overview

This course will provide an introduction to optics with an emphasis on understanding the origins of optical phenomena based on the fundamental theoretical underpinning provided by Maxwell's equations. Basic applications of lasers, geometrical optics, diffraction, and Fourier optics will covered.

Prerequisities: One of PHYS 301, PHYS 354 and one of MATH 215, MATH 255

Broad Overall learning goals

After taking this course, students will be able to:

Required materials/actions:

Recommend text books:

From time-to-time I will be posting additional material to supplement these text books. Please see the respective lectures and tutorials in the Syllabus for links to these materials.

Course Format

This course will be taught in a non-traditional (i.e. non-lecture) manner guided by the following principles based on the Carl Wieman Science Education Initiative here at UBC:

A typical class will involve dicussions (both class-wide and sub-groups) of important concepts and specific example problems in which you (as a student) need to be an active participant. For all of us to get the most out of the class, it is VERY important that you complete the daily reading assignments prior to class.

Marking Scheme

The lab component of the course must be passed in order to gain credit for the course, and you must pass the final exam to obtain a passing mark for the course. Your overall course mark will be determined on the basis of your pre-class reading and in-class participation, homework assignments, the lab component of the course, two midterm exams, and a final exam with the following weighting:

Pre-class Reading and In-Class Activities/Participation.

Before each class, you are expected to complete the assigned, targeted reading. You are also expected to maintain a brief set of running notes on the reading which you will use during class. These notes should generally not exceed a page for each reading assignment. No other supplementary materials are allowed during in-class acitivites: text books, computers, cell phones, etc... are not allowed. The success of the teaching approach of this course critically depends on you to complete the assigned reading prior to each class. Otherwise, the in-class discussion, activities, and problem solving sessions will not be productive or efficient.

Every Wednesday classes will begin with a short reading and activities comprehension quiz. Your entire reading+participation mark will be based on these quizzes, and these quizzes be very easy if you have completed the assigned reading, have your reading notes with you, and have worked during the previous class meetings. The easiest way to pass these quizzes and earn your participation marks is to do the reading and work (i.e. think) during class. However, if you need to skip a class for any reason, it is highly recommended that you go through the class activities on your own time to prepare for these weekly quizzes. Also, if you need to, you are welcome to come to class on Wednesday morning, take the quiz, and leave immediately.

Note : your participation mark will be scaled so 90% gets full credit. So if you need to miss a wednesday morning quiz, there is no penalty.


Homework is assigned each week. Homework assignments will generally be due every week (previously on Mondays) on Thursdays by 5:00 PM sharp in the PHYS408 drop box in the basement of Hebb and a new assignment will be posted. See syllabus below for the exact homework schedule and corresponding homework solutions. Following the deadline, I will accept late homework for 3 more days (72 hours from the due date) with the following penalty: your recorded mark will be your marked score will be divided by 2. For example, you turn your homework 1 day late. The TA marks it as an 80/100 as if the homework was turned in on time. Your recorded mark will be a 40/100. Thus, if your homework is only partially finished, I encourage you to hand in what you have completed for partial credit. Working together on homework is encouraged. Please list on the top of your homework who you collaborated with. However, under no circumstances should you copy or consult in any manner someone else's witten solution to a problem before you have submitted your own homework for credit. Specific examples of what is and isn't acceptable are discussed below "Copied" homeworks will be severely penalized (i.e. all versions of a copied homework assignment will receive a zero). In addition, appropriate action as dictated by UBC policy described in page 48 of the Calendar will be followed which usually will lead to academic suspension.

The TA will fully mark one to three problems (chosen at random) from each homework. Solutions will always be provided for all homework problems. For the unmarked problems, it is up to you check to see if you have grasped the concepts and mastered the mathematical techniques required.



Two 50 minute mid-term exams will be given in class and a full length final exam will be scheduled during final exam week. A list of useful formulae will be provided at the exams. Contents of this list will be disclosed prior to the exams. No extra materials will be allowed. Calculators will be allowed. Cell phones or any other electronics (apart from simple watches and calculators) are not needed and will not be permitted. If you bring any unapproved electronics to your exam, you will automatically receive a score of zero. Makeup exams will only be granted under extremely extenuating circumstance for appropriate emergencies such as sudden illness, recent accident, death in the family, etc. Formal and appropriate written documentation of such an emergency is required and such matters will be referred to the Dean's office as per the Official Policies of UBC.

Academic Misconduct

All matters of academic misconduct will be treated according to the UBC policy described in page 48 of the Calendar.

While it is obvious what constitutes academic misconduct during exams, in the past there has been some confusion regarding misconduct when working together on homework. In the interest of being clear on this topic below I have provided some specific examples detailing what is and what isn't acceptable behavior. This list is meant only as a guide and it is by no means exhaustive. Moreover, the final determination of what is and isn't academic misconduct shall always follow official UBC policy.

Examples of academic misconduct in the context of homework

Examples of NO academic misconduct in the context of homework


Meeting Date Reading due on this day
and links to Homework
What was covered Supplementary Links
Jan. 5
Intro to course

Read this website

Homework #1 (due Jan. 12)

Put homework into the PHYS408 drop box in the basement of Hebb

HWK #1 due Monday, Jan 12 at 5 pm
Reading from from prerequsite material Griffiths: Chapter 7 §3.3-3.6
Chapter 11 and 13
Jan. 7

You should jot down notes as you read

5 §1 pp 150-155
don't worry about momentum
5 §2A pp 156-8
EM waves in a simple medium
5 §2B pp 159-162
just skim to appreciate our appoximations
5 §3 pp 162-3
mochromatic waves
2 §2 pp 41-3
upto Helmholtz eqn. Be aware Saleh and Teich use "j" where j = -i

Jan. 9
Jan. 12

Intensity of E&M waves and plane wave solution. Class activities: (EM2)
Lecture notes from another term
to help you visualize a plane wave look at these applets:
Plane Wave Applet
Another one
Animation of EM wave
You should jot down notes as you read
2 §1 pp 40-1
2 §2 pp 43-5
5 §3, §4A pp 163-7
mochromatic waves, dispersive media, plane waves and spherical waves
Jan. 14
You should jot down notes as you read
5 §4B p. 169 understand the relationship between EM vector waves and scalar waves
2 §2B pp 45-47
Spherical waves and Fresnel Approx
2 §2C pp 47-49
Paraxial Helmholtz Eqn., Do your best to understand Fig. 2-2.5
Jan. 16
Jan. 19
Lecture notes on Paraxial waves from another term: part a, part b
You should jot down notes as you read
2 §3 pp 49-50 Understand the relationship between Eqn. 2.3-4 and 2.4-3
2 §4 pp 50-55 If you are having trouble figuring out Eqn. 2.4-5, that's okay, but make sure you understand everything before it.
Jan. 21
Homework #4 (due Feb. 2 at 5 PM)
Saleh-Teich, pp 56-57 and 2§5 pp 58-63
Jan. 23
Jan. 26
Scintrex's absolute gravimeter brochure, LIGO and LISA interferometer based observatories
Midterm Course Survey Steck Chapter 5 §1-8, pp 79-86
Jan. 28

Saleh-Teich Chapter 3, §1A pages 75-77 (q-parameter form of Gaussian beams), and Steck Chapter 6, §1,2 pages 73-78 (Intro to Gaussian beam properties)

Intro to Gaussian Beams,

Quiz 4

Feb. 2

Saleh-Teich Chapter 3, §1 pages 78-83 (discussion of Gaussian beam parameters), and Steck section 2.4-2.6 pages 19-24 (Ray Optics, matrix formalism)
Homework #5 (due Tuesday Feb. 10 at 5 PM)

HMK #4 due Feb. 2 @ 5 PM

Gaussian Beams, and
Gaussian Beam from the Paraxial Wave Eqn.
Feb. 4
Steck Ch. 6 §5 read up to eqn (6.47).
Intro to the ABCD law
Saleh-Teich Chapter 3 §1B pages 84-85, §2 pages 86-89,91-92 Although they are useful, do not worry about eqns 3.2-5 to 3.2-9
(determination of beam parameters from measurements, beam quality, how a lens changes a beam, beam shaping, and ABCD matrix formalism intro)
Feb. 6

Read the rest of Steck Ch. 6 §5
and this.

no class
Feb. 9
Family Day (Monday)
Feb. 11
HMK #5 due Tuesday Feb. 10 @ 5 PM
Feb. 13
Midterm #1 in Class
other example midterms: m1 m2 m3
no class
Feb. 16
reading week
no class
Feb. 18
reading week
no class
Feb. 20
reading week
Feb. 23

Required reading: Steck Chapter 3 §2-4 (look closely at 3.2 but just skim 3.3 and 3.4) and read Chapter 12 §1-2.2

HMK #6 (due Thursday, Mar. 5 at 5 PM)

Learning Goals for Fourier Optics
If you need a review of Fourier Series read Steck Chapter 3 §1

For more review of Fourier Transforms look in Griffiths quantum book §2.4 on free particle and this and/or this
Fourier Optics
Feb. 25

Read closely Steck 12.2.2-12.2.4

Short proof of the Fourier Transform of a complex Gaussian
Feb. 27
Mar. 2

Read Saleh-Teich Chapter 4 §1A and 1B: just skim pages 105-107 (this is review) and look at pages 111-115. Also read Steck 12.2.5 and 12.2.6

Homework #6 due Thursday at 5pm
HMK #7 due Thursday Mar. 12 @ 5 PM

Mar. 4

Steck 11.1-11.3 and 12.4.1-12.4.2,
first few paragraphs of this.
Visualization of convolution here understanding the convolution theorem here and here

HMK #8 (due Thur. Mar. 19 at 5 PM)

Impulse Response of free space, Huygens Principle,

Quiz 8

Convolution applets 1, 2

Lectures from another term

Mar. 6

Read "Quantum-secure authentication of a physical unclonable key" [Optica, Vol. 1, Issue 6, pp. 421-424 (2014)] and look at its supplemental material (available on CONNECT). Additionally (optionally), you can read the wikipedia article on Quantum readout of PUFs

Mar. 9
Mar. 11
4-f lens system: read and understand this old homework problem and its solution
Skim the following reading (example applications): Steck 12 §5, 5.1

HMK #9 (due Thur, Mar. 26 at 5 PM)

Plasmon applications in metallic nano-lens technology and color holograms

For a discussion of holography: see Steck12 §6

Mar. 13
Mar. 16

Read Steck 7 §1-2.


lectures from another term

Supplemental reading: Saleh-Teich Chapter 10 §1 pages 367-373

Mar. 18

Read Steck 7 §1-2.

Homework #9 due Thursday, Mar. 26 at 5pm

The story of a cavity in our lab
Mar. 20
Midterm #2 in Class

Look at these Fourier Optics examples of the Convolution Theorem, convolving a function with a delta function, example of three Gaussian beams passing a screen, example of a Gaussian beam hitting a sinusoidal grating.

Mar. 23

Skim read Steck 7 §3, but read closely Steck 7 §4 and 7 §5.0 and §5.1. Understand Eqn 7.60.
Steck 8 §1-3

HMK #10 (due Thursday, Apr. 2 at 5 PM)

Polarization Applet

Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity

Local Copy

Mar. 25
Steck 8 §1-7
Mar. 30

Homework #10 due Thursday, Apr. 2 at 5pm

HMK #11(due Thursday, Apr. 9 at 5 PM)

Apr. 1

Note: Problem solving session is in Hebb 12 at 5:30 (and not Henn 318)

no class
Apr. 3
Good Friday
no class
Apr. 6
Easter Monday
Apr. 8
Homework #11 due Thursday at 5pm
Apr. 10
Field Trip: Madison Lab Tour

Madison Lab Tour : goto Chemistry/Physics Bldg, Room A015 (basement)

please arrive just before either 9:00AM (tour #1) or 9:30AM (tour #2) : 30 people max per tour

  Apr. 24

Review session: Fri., April 24th,

5:00-7:30 PM in Henn 318

Practice Problems
Note: solutions to these problems are unfortunately NOT available, but please feel free to discuss them with me or the TAs
location: Henn 318
Final Exam
April 27

Monday, April 27

15:30-18:00, IBLC 182

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.