Research Questions & Data Collection

- What variety of teaching practices are currently used in the biology program at UBC?
- What are the relationships between specific classroom practices & student learning?

Classroom characterization

Goal: identify these relationships to inform teaching practice

Classroom styles in our biology courses

- **Mostly lecture** (n=7)
- **Extensive group work** (n=17 courses)
- **Emergence of group work** (n=17 courses)

- Classrooms assessed from clustering averaged COPUS data.
- Evidence-based, active learning teaching practices are quite prevalent across the biology program.
- Most active classes are large-enrollment, lower division courses.

Student performance and classroom styles

- **Students** in ‘extensive work’ classes perform significantly higher than students in other classes.
- This is consistent with an overall trend: evidence-based, active learning practices contribute more to student learning than traditional lecturing.

- Error bars are SEM * p<0.05.

- "Student Performance" is the effect size of the difference between pre- and post-test diagnostic scores within each class section, calculated using the standardized mean gain effect size formula.

Time spent on group work, but not lecturing, predicts student performance

- Consistent with literature, classes with more student-centered time have higher performance.
- Maximum % group work observed was 63% of class; unknown impact beyond that.

Worksheets & peer instruction support student learning

- In our classes, the most common student-centred activities are:
 - Clicker questions (peer instruction)
 - Worksheets
 - Individual problem-solving
 - Asking answering questions to the whole class

- Students in classes that include any worksheets or any clicker questions significantly outperform those that do not.

Comparison to departments in other universities

- Student-centered practices at UBC: less lecturing, more group work
- Impact of Science Education Specialist (SES) model of educational change: Significant, multi-year institutional initiatives with departmental support for the integrated SES individual(s)

Observational & performance data collected

<table>
<thead>
<tr>
<th>Course level</th>
<th># of courses</th>
<th>Total # of matched students</th>
<th>Observation of course enrolment</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>13 (2)</td>
<td>1431 (47%)</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>9 (4)</td>
<td>1723 (64%)</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>5 (5)</td>
<td>463 (33%)</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>6 (6)</td>
<td>111 (25%)</td>
<td></td>
</tr>
</tbody>
</table>

- Each course was observed for a “typical week” (~3 hours).
- 17 diagnostic tests consisting of a total of 145 questions, compiled largely from validated questions in the literature.
- Matched students wrote the test pre- and post-course.

Science Education Specialist, Model

- Students centered practices at UBC: less lecturing, more group work
- Impact of Science Education Specialist (SES) model of educational change: Significant, multi-year institutional initiatives with departmental support for the integrated SES individual(s)

Conclusions & Next Steps

- We have quantitatively linked program-wide class observational data with student outcomes.
- Suggestion: introduce worksheets or peer instruction into your class.
- Questions: How to get the most out of the rich, time-series data?
- How to visualize / display the data, to encourage educational change?

Questions & ideas from you?

- Research:
 - How would you approach this analysis? What questions would you ask?
- Teaching:
 - How might these results impact your own teaching practices?

Thank you to…

- Many Biology Instructors & students for their participation.
- Leah MacFastyn & the LAVA group for discussion on analysis

Is more activity always better?

A department-wide study of relationships between classroom practices and student performance

Megan Barker1,2, Laura Weir1,3, Lisa McDonnell1,4, Natalie Schimpf1, Tammy Rodela1, Patricia Schulte1

1Carl Wieman Science Education Initiative, University of British Columbia | 2Simon Fraser University | 3St. Mary’s University, Halifax | 4University of California San Diego

megan.barker@sfu.ca | twitter/wordpress: @meganbarkerase

References