A “Flipped” Approach To Large-Scale First-Year Physics Labs

Georg W. Rieger, Michael Sitwell, James Carolan, and Ido Roll

Features

- Inquiry-based, peer-discussions with clickers
- Phase 1: Builds Experimental Skills and Understanding of Data (8 weeks)
- Phase 2: Final Lab Project with Presentation (3 weeks)
- Homework connects labs:
 - Experiment at home – bring data to next session
 - Analysis at home – bring result to next session

HW Marking

<table>
<thead>
<tr>
<th>HW Marking</th>
<th>HW Marking</th>
<th>HW Marking</th>
<th>HW Marking</th>
<th>HW Marking</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lab 1:
Introduction to Uncertainty

HW1:
Experiment: Measure walking speed

Lab 2:
Graphical Representations

HW2:
Graph: Histogram of walking speed on two terrains

Lab 3:
Quantifying Distributions

HW3:
Experiment: Does mass or length influence the period of a pendulum?

Lab 4:
Computer-based data acquisition

HW4:
Analyze: Plot distributions and compare two data sets.

Lab 5:
Friction Experiment

HW5:
Graphing: Use Excel to make scatter plot. Add trend line.

Lab 6:
Best Fitting Lines

HW6:
Graphing: Use Excel to make scatter plot. Add a non-linear function.

Lab 7:
Predictions and Extrapolations

HW7:
Graphing/Analyze: Add error bars to scatter plot. Fit a trend line and make a prediction.

Lab 8:
Working with graphical representations

HW8:
Think about a question and a plan for your final project.

Feedback Session:
Discuss project plan with peers and TAs.

Presentation Session:
Present your experiment.