Research-based instructional strategies in a course on the role of chemistry in solving global challenges

Kerry J. Knox1,2 and Gregory R. Dake1

1Department of Chemistry, UBC
2Carl Wieman Science Education Initiative
CHEM 341 - Global challenges: A chemical perspective

- Department of Chemistry offering to the Combined Major in Science (CMS) program since 2011/12
- ~160 students; ~60% CMS, 20% Chem. Majors, and 20% other Majors
- Examples of course objectives

By the end of this course, students should be able to:

2. Express in written and oral form why chemistry and chemical research is important in society.

4. Converse enthusiastically with friends and family about the role of chemistry in addressing the global challenges facing the human race.

5. See the connection between the content of their undergraduate chemistry courses and global issues.

6. Spontaneously seek out chemical inconsistencies and inaccuracies and begin to form their own opinion when reading or watching news reports...

9. Work effectively as a member of a team of scientists.
Overview of activities

• Restructuring of class time to create increased opportunities for discussion and feedback

• Implementation of two-stage exams and exam wrappers

• Replacement of final written assignment with a term-long team research project to create increased opportunities for feedback and for developing science communication and teamwork skills
Restructuring of class time

Typically...

1. Reading and guiding questions/tasks to be completed ahead of class

2. In-class peer discussion activities based on pre-class preparation

3. Whole class discussion on topic guided by instructor

In-class interactive activities included:

whole class jigsaw activities small-group discussions
concept mapping decision tasks
worksheets compare/contrast framing
Implementation of two-stage exams and exam wrappers

- Three midterms replaced with two-stage exams; implementation as described by Gilley and Clarkston,¹ but with a twist...
- “Bonus credit” available during group part if team is able to offer additional examples/details on open-ended questions
- Generated high levels of engagement; teams eager to show what they know
- In-class “exam wrapper” exercises following exams²

Term-long team research project

In teams, students research and analyze a global challenge from a chemical perspective; culminating in a conference-style poster session

Features:

• Term-long project, with deliverables throughout
• **Individual phase and transition to team phase**
• Individual and group peer-review processes
• **Opportunities to revise work in light of feedback**
• Structured practice in teamwork (group contracts, feedback from team members *via* iPeer)
Student perceptions of course (midterm survey)

Learning activities:
“... was helpful for developing my understanding of this topic”

Percentage respondents

SA A N D SD N/A

WC discussion biofuels
WC discussion peak phosphorus
lectures chemical toxicity
lectures energy
readings/qu.s peak phosphorus
lectures industrial chemicals
peer discussion peak phosphorus
WC discussion renewable energy
peer discussion biofuels
jigsaw activity toxicity
readings/qu.s toxicity
readings/qu.s biofuels
readings/task renewable energy
peer discussion renewable energy
concept mapping industrial chem.s
Student perceptions of course (midterm survey)

List the one or two aspects of this course that are most helpful for your learning:

discussion
Student perceptions of course (midterm survey)

List the... aspects of this course that are most helpful for your learning

"The topics chosen are very interesting and relevant to our current society and the discussions in class help me think and argue my perspective on the issue."

"Being able to read articles relating to the topic and discussing them in class helps my learning the most. This helps me retain information the best and also helps improve my critical thinking skills."

"I find I retain the most information from interactive activities, such as those when we are given readings or told in advance to think about a particular topic, given group time to discuss or work on a worksheet, and then Prof. reviews the important concepts in a lecture-style format. Whenever there are worksheets my learning seems to be the most noticeable."

"Collaborating on group assignments forced me try harder in an attempt to preserve my ego."

"i just appreciate how there's reading and it doesn't simply stop there. The discussions we have in class clarify and address the areas I need to focus. This way, I'm not wasting my time trying to understand what may not be as important"

"1) Innovative topics. 2) Interactive class activities."
Student perceptions of course (midterm survey)

“Describe the (most important things) you have learned...”

“I think differently about (this topic) as a result of (this course)”

peak phosphorous
chemical toxicity
biofuels
renewable energy
industrial chemicals

Percentage respondents
Describe the one or two most important things you have learned...

"I learned about the peak phosphorus which I believe will be a very huge issue very soon and I learned about how chemistry really does cover many aspect of our lives."

"I actually really like this course. I feel like for once i have learned things in science that are so direct to today's problem/challenges/great discoveries."

"The first two topics were very relevant to society, and my life, cleared up some misconceptions I had, as well as common misconceptions."

"2. We're a lazy, wasteful, environment-destroying, ignorant species that are planting the seeds of our own eventual demise, and a majority of us don't even know it. But hey, at least this class is trying to do something about it!"

"I think that the societal factors that we consider, whether it be the phosphorus shortage, or the implications of bio-fuels, are extremely interesting and hugely important because they are decisions that will need to be made in our lifetime! I was shocked with how unaware and uneducated I was personally on these matters, and I think it is important to learn about these things because they are going to have a drastic influence on both my own future as well as upcoming generations."
Future directions

Pre- and post- measures collected:
- Attitudes: Subset of CLASS1 subscales and SPESS2 ‘Science and Society’ and ‘Human-Science Interaction’ subscales adapted for chemistry
- Confidence in chemistry: ITOI scale items adapted for chemistry
- Interest in topics; changed thinking about topics (self-reports)

Post- measures collected:
- SALG-style items with respect to helpfulness of course offerings
- SALG-style items with respect to high-level learning objectives

Other plans:
- Use examples of student work to investigate use of peer feedback
- Workshop at Improving University Teaching Conference 20143

1J. Barbera \textit{et al.}, \textit{Journal of Chemical Education}, 2008, \textbf{85}, 1435A; 2Jolley \textit{et al.}, \textit{Journal of Geoscience Education}, 2012, \textbf{60}, 83; 3K. J. Knox, B. Gilley and T. Ivanochko, Research-based instructional strategies for fostering behavioral change, interactive workshop, IUT Conference, Vancouver, Canada, July 2014
Acknowledgements

Jackie Stewart
Director: CWSEI in Chemistry

Eugene Chong
Teaching assistant CHEM 341

Claire Chatalova Sazepin
Teaching assistant CHEM 341

Wayne Mah
Poster session logistics assistance

Sara Harris
Extended project and peer-review guidance and resources

Carol Pollock
Extended project and peer-review guidance and resources

Brett Gilley
Jigsaw and two-stage exam guidance

Robin Young
Poster session logistics guidance

Skylight Dev. Award
Financial support for poster session