Planning Assessment for a Game-Like, Highly Reusable Data

Structures Assignment

Steve Wolfman, CPSC

Students submit programs that use a data structure with an unknown implementation:

Student reasoning:

Students match up
6-10 possible
implementations
with “mystery”
versions.

This student might
hypothesize mys01
is the array-based
sorted list with
resizing because of
the small but
increasing “jumps”
in the graph.

Overall g0 ig1 ig2 ig3

Curve Matching Confidences

mys01
mys02
mys03
mys04
mys05
mys0f

igd

41.8%

29.8%
19.8%
0%
19.9%
17 Q9

ig5

CPSC 221: Dictionary Wars

ig6

gl igd

nlgn
56.7%

67.1%
21.6%
0.1%

78.5%
270,

gir?

ig9

[=]

recad AUtomated

Display
@ Chart
Data

Overlay
n

nlgn

5]
n-

1.5%
3.1%
58.6%
99.9%

1.7%
14 19

reasoning:

The server
runs and plots
results from
students’ test
cases. They’re
scored on
“asymptotic”
distinction.

Here, mys01 is
clearly not a
guadratic
curve, but
mys04 was.



Project Goals

Teach students to: Predict, measure, and judge the
importance of the strengths and weaknesses of
alternative abstract data type implementations.

Next steps: “Turn-key” automation of the project.
Instructor makes a few high-level choices (which
structures, what semantics, who to disseminate to).
Each student receives a unique but related problem
to solve. Students easily receive semi-automated
feedback as they go.



Assessment

Providing 2-3 different questions related to the
project on the exam (tomorrow). How should
we assess student learning in the long run?

Roughly sketch the dictionaries” behaviour responding to the commands “INSERT 100000, INSERT 99999,
..., INSERT 3, INSERT 2. INSERT 1" on the axes below. The vertical axis should be the total time for all
operations completed to that point (as in the programming project). Label and briefly explain key elements of
the sketches (e.g.. unusual properties, asymptotic behaviour, and relative runtimes between graphs).

(a) Unsorted LL:
time Imagine the keys 1-4,000 have been inserted in random order ...

Give a strategy to distinguish each pair of dictionaries using only find
and remove operations. ... For full credit, your strategy should
absolutely unambiguously distinguish the dictionaries.

[Setup explaining a company using a binary heap to solve a
problem.] Unfortunately, after a “"cold reboot" of the
system ... they suffer occasional delays during their first busy
~ #ops period after the reboot. Subsequent busy periods are fine
until the next ““cold reboot". Using your knowledge of
binary heaps, hypothesize what is causing the trouble.




