The Invention Support Environment

Where do we go from here? Natasha Holmes, Ido Roll, James Day & Doug Bonn

Context

- Invention Activities
 - Activities where students are asked to invent a method to solve a problem before being taught the domain
 - Least-squares fitting
 - Weighted Average
 - Weighted Least-squares fitting
 - Slope Uncertainty with fixed intercept
 - T-test
- Invention Support Environment
 - Computer-based learning environment built to support invention activities (Holmes, N. 2011)

ISE: Weighted Average

Experimental conditions

Scaffolding stages*	Treatment Group	Control Group
Exploratory analysis	Pairwise ComparisonsRankingSelf-explanation	
Planning and design	Build EquationSelf-explanation	■Build equation
Implementation	Apply equationRanking datasets	 Apply equation
Evaluation	■Self-explanation	

*Roll, Holmes, Day & Bonn (2012) Using metacognitive scaffolding to improve the inquiry process and its outcomes in guided invention activities

Quality of Inventions

- Individual invention activities (Roll, et al. 2012)
 - Quality of inventions
 - Quality and quantity of self-explanations
- Slope Uncertainty/Fuel Consumption
 - Analyzed this activity in 2010, 2011

Domain Learning

- Pre- and post-study statistics test
 - 5 domains
 - 3 question types:
 - Conceptual
 - Evaluation
 - Transfer

• Previous found that metacognitive scaffolding improves performance on evaluation questions but has no effect on conceptual or procedural questions.*

*Holmes, N. (2011) The Invention Support Environment: Using metacognitive scaffolding and interactive learning environments to improve learning from invention. MSc. Thesis, *University of British Columbia*

Practice Tasks

• Procedural

- Calculate the index for different data sets
- Self-explanations

iquids are combined into a container in different vo How can you determine the density of the final liqu		table provided.	Liquid	Volume (mL)	Density (g/mL)
What are the data points in this problem?	-?-	•	А	100	1.02
			В	10	0.72
What are the weights in this problem?	-?	•	С	500	1.033
How do you normalize to get the final density?	-?-	•			
What is the average density of the final liquid (to 2 decimal places, in g/mL)?		g/mL			
			+ Previous	Next 🚽],
					Done

• Transfer

- Evaluate a variation on the formula
- Apply to a new situation

Transfer activities

- T-test invention activity
 - Both in low scaffolding
 - Quality of inventions
 - Quality of self-explanations

- Recall data and equation
 - Which of the following graphs were used last week?
 - What was the equation from last week?
 - What were the features?

Last week we asked you to use four graphs to invent a method for finding the uncertainty in the slope of an unweighted best-fitting line with a fixed intercept at the origin. Before we discuss slope uncertainty in a more general form, we would like to spend a minute recalling some of the information presented last week.

Behaviours

- Log files of student actions throughout invention process
 - Where do they spend their time during invention activities?
 - How many solutions do they create?
 - How much evaluating are they doing?
 - Other questions I can't even think of?

Next round of research questions?

- Motivation orientation
 - Does motivation correlate to invention performance?
 - How do invention activities affect motivation over the year?
- Case-studies
 - How do students use invention activities?
 - What self-regulated learning strategies are they using on their own?
 - What SRL strategies do we support?
 - What SRL strategies should we be supporting?