Revitalizing Labs: Lessons from 2.5 Years of Iterative Development and Assessment of Digital Logic Labs

Elizabeth Patitsas, Steve Wolfman, and Meghan Allen
Department of Computer Science, University of British Columbia – SIGCSE 2011

A case study of change: evolution of the first two circuitry labs

<table>
<thead>
<tr>
<th>Fall 2008</th>
<th>Spring 2009</th>
<th>Summer 2010</th>
<th>Fall 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>What we inherited</td>
<td>Let there be discovery...</td>
<td>...social motivation...</td>
<td>...and time for creativity.</td>
</tr>
</tbody>
</table>

Fall 2008

In this term, the introduction sequence was:
- Test a gate (pictured above)
- Build a priority chain

Spring 2009

In this term, the introduction sequence was:
- **Mystery chip exercise** (pictured above)
- Build a priority chain

Summer 2010

In this term, the introduction sequence was:
- Mystery chip exercise
- **Group debugging** (pictured above)
- Build a priority chain

Fall 2010

In this term, the introduction sequence was:
- **Flashing lights exploration** (pictured above)
- Mystery chip exercise
- Group debugging

After six terms of incremental change

The labs are now:
- Doable in the allotted time – reducing stress on students and TAs in lab;
- Engaging, featuring more visual, immediate feedback from the equipment;
- Contextualized, with opportunities for creativity and discussion;
- Complete with clear and consistent grading.

New lab activities include:
- The addition of activities on scalability, multiplexing and limitations of theoretical models.
- An effective introduction to sequential circuitry.
- Open-ended “project labs” on cryptography, coding theory, and PRNG.

The process: drafting a lab

- **Instructors** review the lab
- **Lab Coordinator** drafts and refines the lab
- **TA's** test run the lab
- **Teaching assistants** teach
- **Students** survey feedback

Survey results: overall findings

- Increased TA satisfaction
- Increased student satisfaction
- Increased student-reported learning

Factors for lasting change

Jones [2] lists five conditions that promote and sustain changes in the curriculum [1], all of which are satisfied in our work:
- Mutual trust amongst stakeholders;
- Commitment and consistent leadership;
- Proceeding with a non-threatening, incremental pace of change;
- Professional development for academic staff; and
- The use of purposeful incentives for curriculum developers.

References

Acknowledgments

E.P. was supported by the CS Science Education Initiative. The changes we made would not have been possible without the input from all the instructors, TAs, and students of the course in the past three years – thank you all.