Promoting & Measuring Scientific Reasoning Expertise of 2nd Year Students

F. M. Jones*, M. Jellinek, M. G. Bostock, Dep’t of Earth and Ocean Sciences (EOS), University of British Columbia (UBC), Vancouver, BC, Canada.

(*f.m.jones@eos.ubc.ca)

Project outline

- **Define nature of expertise**: [4 refs]
- **Design / implement / test corresponding pedagogy**
- **Measure (assess) students’ improving abilities**

The Course: EOSC212

Topics in Earth and planetary sciences

- 13-week, 25th year course designed to:
 - Foster generic scientific skills while exploring 3-4 Earth and planetary science topics.
 - Pedagogy and assessment based on expertise and literature on expertise & science expertise.

Classroom practices:

- Team-based learning strategies
- Replace exams with quizzes and projects
- Mix team-teaching with solo-teaching
- Discursive rather than didactic instruction
- Use of diverse, Department-specific topics.

Data & results of using strategies (3 terms):

- Abstract writing skills improved then plateaued.
- Thinking with (about) models/data improves.
- Questions posed... o Depend on article type.
 - Become more articulate.
 - Become more insightful, less about content.
- Surveys showed students appreciate... o Topics
 - Team work
 - Practicing communication & peer assessment
 - Discussion orientation

Continuing challenges:

- Assessment of question type and quality
- Use of question-posing as a measure of expertise

The feedback & progress of the project

- **Question type:** Discussion vs Content
 - **Expert students:** More about oral presentations.
 - **Beginning students:** More about content.

Conclusions:

- **Lessons learned:**
 - Improving thinking science expertise involves explicit guidance in aspects involving judgments and metacognition.
 - For EOSC212 these are:
 - Synthesis of new knowledge (abstract writing);
 - Appropriation of various & relevant types;
 - Appropriation of ‘models’ & ‘data’ in discussion;
 - Communication (written, oral, and poster);
 - Assessment of peers’ work & thinking.

References on attached handout, via

http://www.eos.ubc.ca/teaching/val/scientifick.html

Acknowledgments:

- This project is generously supported by the UBC ESSH-Science Education Initiative (ENW2006)
- Thanks to: Carl Bannister, Bambos, (ENW), Harry Schwarz, 2005 education initiative expert.
- Individuals & project contributors.

Promoting & Measuring Scientific Reasoning Expertise of 2nd Year Students

Data demonstrating learning

- **Writing abstracts for science articles**
 - Workshop techniques (students & self-assessment)
 - Abstract writing improves (mean F = 10.04, p<0.001)

- **Reasoning with models and data**
 - Pre-test: Based on an article 1:
 - Questions about models & data.

- **Quizzes on readings: Individual & Teams**
 - Team quizzing promotes:
 - Instant feedback (IfAt cards)
 - Compare teams & individuals

Guided question posing – 2010

Question type: Discussion vs Content

Graduate Pre-Post

- **Questioning posing workshop after Q1.**
 - Short pres'n time:
 - Questions get better.

Guided question posing – 2010

Graduate Pre-Post

- **Questioning posing workshop after Q1.**
 - Short pres'n time:
 - Questions get better.

Expert Scientists ...

- Have significant domain knowledge [2][6][12]
- Use analogical thinking [5]
- Use distributed reasoning (team player) [5]
- Identify & follow up anomalies [5]
- Frequently questions work & assumptions and generates hypotheses [4][7][10][11]
- Can design & execute experiments [14]
- Are measurement and/or observation oriented [3][14]
- Evaluate relevance & quality of data [12][14]
- Fluently use & relate models & data
 - Including math & others [4][8]
- Can articulate explanations & syntheses [12]
- Use evidence & rhetoric in argumentation [12]
- Use graphical representations both for making sense and arguing. [12][19][9]

Pedagogic domain knowledge [2]

- Concept (content) knowledge [2][6][14]
- Strategic knowledge [2][6][14]
- Procedural knowledge [1]
- Frameworking (uses schemas) [2][6]
 - Flexible retrieval
 - Noticing patterns
 - Integrate new info. into schema
 - Adaptable (transfer)
- Metacognitive habits [2][6]
 - Learning is “deliberate”
 - Actions are planned & monitored
 - Making judgments is multifaceted
- Affective characteristics: [1]
 - Beliefs: relevance / irrelevance
 - Motivated to apply expertise
 - Expectations of what’s achievable

Experts Have ...

- Concept (content) knowledge [2][6][14]
- Strategic knowledge [2][6][14]
- Procedural knowledge [1]
- Frameworking (uses schemas) [2][6]
 - Flexible retrieval
 - Noticing patterns
 - Integrate new info. into schema
 - Adaptable (transfer)
- Metacognitive habits [2][6]
 - Learning is “deliberate”
 - Actions are planned & monitored
 - Making judgments is multifaceted
- Affective characteristics: [1]
 - Beliefs: relevance / irrelevance
 - Motivated to apply expertise
 - Expectations of what’s achievable

Topics in Earth & Planetary Sciences

- 2-3 readings per module
- Solid Earth physics
- Planetary science
- Atmospheres/oceanography
- Individual and team quizzes
- Abstracts / questioning workshops
- Abstracts written for each article
- Questions posed for each article
- Team exercises with data & models
- Discussion oriented lectures lead by
 - Dual instructors
 - Single instructors
 - Guests
- Student - chosen projects
 - Oral presentation
 - Poster presentation
 - Peer assessments

Questions posed about articles...

- Number of questions posed:
 - Q0: 0% ~ Q7: 100%
- Questioning posing workshop after Q1.
 - Questions get better.

Feedback about presentations:

- Self-selected topics & peer assessed

In the question session and self-assessment...

- Year on topic question... (introduced only segment)
 - Independent - 40% (2009 students)
 - Students selected topics & peer assessed
 - Students to work independently.
 - All students in the course.

References on attached handout, via

http://www.eos.ubc.ca/teaching/val/scientifick.html

Acknowledgments:

- This project is generously supported by the UBC ESSH-Science Education Initiative (ENW2006)
- Thanks to: Carl Bannister, Bambos, (ENW), Harry Schwarz, 2005 education initiative expert.
- Individuals & project contributors.

Readers ...

- Did we forget any aspects of “scientific expertise”?
- Use post-its to contribute below.

IfAt cards

- **Average of students' grade**
 - Articles & data
 - Indicators - do and don’t.
 - Three groups: 10, 70, 90%.
 - Ability to discern data & model results.

Abstract writing skills improved then plateaued.

- Abstract writing improves (mean F = 10.04, p<0.001)

Guided question posing – 2010

- **Graduate Pre-Post**
 - Short pres'n time:
 - Questions get better.

Reading with models and data

- Pre-test: Based on an article 1:
 - Questions about models & data.

Team quizzing promotes:

- Instant feedback (IfAt cards)
- Compare teams & individuals

Quiz scores: Teams & individuals

- Team score
 - Average of peers' grade
 - Score (%) bins
 - 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%
 - Team number

Students reminded of class.

- Students reminded of class.