Identifying and Addressing Student Difficulties with Proportional Reasoning

Department of Physics
University of British Columbia
January 27, 2014

Andrew Boudreaux
Western Washington University
Bellingham, WA
Acknowledgments

Collaborators:

Suzanne Brahmia, Rutgers University

Stephen Kanim, New Mexico State University

Undergraduate research students at WWU:

Lucas Jones and King Wong

Supported by NSF grants
DUE-1045227, DUE-1045231, & DUE-1045250
Ongoing research and curriculum development effort

- Investigate productive and problematic aspects of students’ proportional reasoning in introductory physics contexts
- Develop and assess instructional strategies to increase student facility
Mathematical sense-making

Mathematization:
The flexible and generative use of mathematics
to describe and analyze phenomena
Proportional Reasoning:
A foundation for concepts in physical science

“The idea of ratio is at the heart of measurement. To conceive of an object as measured is to conceive of some attribute of it as segmented, and that segmentation is in comparison to some standard amount of that attribute.”

Thompson & Saldahna, 2004
“One of the most severe gaps in the cognitive development of students is the failure to have mastered reasoning involving ratios … this disability is one of the most serious impediments to their study of science.”

– Arnold Arons,
A Guide to Introductory Physics Teaching
Ratio and product quantities in introductory physics

<table>
<thead>
<tr>
<th>Context</th>
<th>Mathematical Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homogeneous substance</td>
<td>(d = \frac{M}{V})</td>
</tr>
<tr>
<td>Kinematics</td>
<td>(v = \frac{\Delta x}{\Delta t}; \ a = \frac{\Delta v}{\Delta t})</td>
</tr>
<tr>
<td>Force laws</td>
<td>(k = \frac{F_{\text{spring}}}{\Delta x})</td>
</tr>
<tr>
<td>Periodic motion</td>
<td>(f = \frac{# \text{ of reps}}{\Delta t})</td>
</tr>
<tr>
<td>Energy</td>
<td>(W = F\Delta x)</td>
</tr>
</tbody>
</table>
Students who have difficulty working with ratios may struggle to make sense of physics.
Effective coping strategy: Abandon sense-making!

Hammer, 1989: Two approaches to learning physics

Liza: Learn formulas and facts. Understanding is knowing the formulas.

Ellen: Make sense of the formalism and integrate with own intuitions.

While Liza thrived, Ellen eventually abandoned her approach to “do it like everyone else”
but what does sense-making look like?

“Students . . . frequently run into formidable obstacles in the interpretation of division. They have never interpreted division as calculating how much of the numerator is associated with one chunk of whatever is in the denominator.”

– Arnold Arons,

A Guide to Introductory Physics Teaching
Verbal interpretation of ratio:

- **speed** is the distance traveled during each second of the (uniform) motion
- **period** is the time required for each repetition
- **density** is the mass of each cubic cm of the homogeneous material
The Earth’s circumference is 25,000 miles. A rope is wrapped snugly around the Earth. Then 20 feet of additional rope is spliced in. When the new, longer rope is held evenly above the Earth’s surface, which animals can pass beneath it?

a. Amoeba
b. Bumblebee
c. Cat
d. Dromedary

Interpret Pi as a ratio (and apply ratio to calculate)
Math courses generally focus on the context-free use of number.

In physics, we must build and interpret ratios in context.

Mathematization
Mathematical sense-making

Mathematization:
The flexible and generative use of mathematics to describe and analyze phenomena

Mathematization:
A hallmark of physics for which students may have little preparation
Question for Research

To what extent are students able to interpret ratios in context?
Research Methods

Develop and administer written questions and analyze student responses.

Individual student interviews are used to validate questions and probe reasoning in more depth.
The Porsche question

On its website, Porsche has the statement “21 mph per second” in the technical specs for one of its cars.

a. Describe the information that the number 21 gives about the car. Be as specific as you can.
 It describes that the car is increasing its velocity by 21 mph for each second that goes by... the acceleration.

b. Make a sketch that explains your answer to part a.

Administered to:

- WWU calc-based mechanics, ungraded course pretest, N = 59
 - ~ 65% provide a complete interpretation

- NMSU calc-based mechanics, course exam, N = 76
 - ~ 45% provide a complete interpretation
Failure to provide an interpretation:

a. Describe the information that the number 21 gives about the car. Be as specific as you can.

b. Make a sketch that explains your answer to part a.
“Miles per hour per second. Acceleration.”

“21 is the acceleration because you are given a distance/time2”

“Seems like an acceleration (distance/time/time), but hr are not equal to sec”

“21 mph per second describes the acceleration. ‘21 mph’ is a velocity; when ‘per second’ is added to that velocity statement, it turns into an acceleration so that the units are 21 mi/hr*s”
Incomplete or muddled interpretation:

“The car has an acceleration of 21 mph every 1 second.”

“21 is how fast the car accelerates in 1 second.”

“21 is the acceleration the car can attain in 1 second.”
Incorrect (confusion btwn vel and accel):

On its website, Porsche has the statement “21 mph per second” in the technical specs for one of its cars.

a. Describe the information that the number 21 gives about the car. Be as specific as you can.

21 miles per hour per second. The number 21 is giving a distance about how far the car travels but the units are not the same.

b. Make a sketch that explains your answer to part a.

\[\frac{21 \text{ mi}}{\text{hr}} \cdot \frac{1 \text{ hr}}{3600 \text{ sec}} = \frac{21}{3600} \text{ mi/sec} \]

Every sec, the car travels 21/3600 mi.

- 21/3600 miles in 1 sec.
- Another 21/3600 miles in 2 sec.
- Another 21/3600 miles in 3 sec.
Incorrect (difficulties with “per”):

By this, per hour means that a particular model is characterized as a number of miles per hour the car can go in one second. In this case the number of miles per hour is 21, in each second. Also, since we are talking about speed which is distance divided by time the word per means divided by. Ex. miles.

The number 21 means that over a period of one second, the Porsche will change its speed by 21 miles per hour.

Per is used to mean a unit over a unit, or division, to signify rate.

21 means the miles the car will give you if you put one gallon of gasoline in the car. The word “per” means a ratio of miles in gallons of gas.
Students have difficulty interpreting acceleration as the change in speed (in mph) that occurs in each second of the motion.

- Tendency to focus on procedures rather than concepts
- Tendency to confuse related quantities
- Lack of functional understanding of “per”

Do students encounter difficulty when the ratio itself is unfamiliar (i.e., rather than the structure of the quantities)?
A student studying motion conducts an experiment in which a windup toy car moves uniformly, traveling 60 cm in 2.4 sec. The student divides 2.4/60 and obtains 0.04.

Describe the information the number 0.04 gives about the motion and explain. If this number does not have a meaningful interpretation, state that explicitly.

Administered before, during and after instruction at a variety of institutions and levels of introductory physics
Toy Car question

Correct student response

• Toy car moves 60 cm in 2.4 s.
• Interpret $\frac{2.4}{60} = 0.04$

Describe the information that the number 0.04 gives about the motion and explain your reasoning. If the number 0.04 does not have a meaningful interpretation in this situation, state that explicitly.

This tells you that it takes the car 0.04 seconds to move one cm.
Toy Car question

Incorrect responses

“0.04 is the distance in cm the car will move per second because the student divided the seconds by the centimeter.”

Tendency to interpret 0.04 as the speed of the car
0.04 could possibly represent the velocity? D/T = ? I know I’ve dealt with similar problems in math classes before, but I do not remember what this equation represents.

“0.04 means cm/s. It is from distance/time = rate. The car is going 0.04 cm/sec.”

“0.04 could possibly represent the velocity? D/T = ? I know I’ve dealt with similar problems in math classes before, but I do not remember what this equation represents.”

Rote use of formula

- Toy car moves 60 cm in 2.4 s.
- Interpret 2.4/60 = 0.04
Results similar to Porsche question:

Many students attend to surface features and concrete procedures, rather than the structure of the underlying reasoning.
Toy Car question

An additional response

“Time over a distance is not useful for talking about the motion of the car. Dividing 60 cm/2.4 sec would give the average velocity and is far more useful. s/cm . . . is not useful, unless you want to know how long it takes for the car to travel 1 cm, which is 0.04 sec.”

Tendency to regard 0.04 s/cm as “meaningless” (even when student has interpreted it correctly)
Toy Car question

Results *(before course instruction)*

- **Toy car moves 60 cm in 2.4 s.**
- **Interpret 2.4/60 = 0.04**

<table>
<thead>
<tr>
<th></th>
<th>WWU</th>
<th>NMSU</th>
<th>Rutgers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correct:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(or partially correct)</td>
<td>Calc-based (N=64)</td>
<td>Gen Ed (N=82)</td>
<td>Calc-based (N=83)</td>
</tr>
<tr>
<td></td>
<td>80%</td>
<td>50%</td>
<td>50%</td>
</tr>
</tbody>
</table>
Zone of Mathematization

Concepts in the introductory course are well within a physicists zone of **mathematization**, but are beyond or just at the edge of students’ zones.

Instructors may have forgotten what it’s like to operate outside the zone.
Let me remind you.

A motion is characterized by 9.8 m/s2.
Provide an interpretation of the number 9.8.

A motion is characterized by 0.1 s2/m.
Provide an interpretation of the number 0.1.

“Inverse g task” given informally to physics faculty

“Is this pedagogically speaking, or physically? Well, let’s see. It’s the... the reciprocal of the speed is the time it takes to cover a certain amount of ground. So this is the time it takes to cover that certain amount of ground, and then the time it takes to do that next chunk of that, so, I don’t know what that means physically . . . but that’s what I would characterize it as.”
Manipulating task difficulty to explore the variability/stability of student reasoning

Structure
- Variables
- Decimals
- Small integers

Context
- Everyday situations; Familiar ratios
- “Sciency” situations; Unfamiliar ratios
Research question:
To what extent do quantity structure and physical context impact student facility with the verbal interpretation of ratios?
Paired Questions Study

• Suite of 10 MC questions given in mechanics, E&M, and chemistry courses at Rutgers University (N > 1000)
• Suite administered with FCI, CSEM, and CCI at beginning and end of course
• Paired questions administered at random to half of each participating class
• Over 15 versions of the suite used; total of 30 distinct items
Paired Questions: **Verbal Interpretation of Ratio**

Catherine is hired to paint the ceiling of her aunt’s living room. She covers the ceiling with a uniform coat of paint. The ceiling has a surface area of 580 square feet. After finishing, Catherine notes that she used 2.4 gallons of paint. Catherine divides 580 by 2.4 and gets 241.7.

Which of the following statements about the number 241.7 is true?

a. 241.7 is the total number of gallons of paint used
b. 241.7 is the total number of square feet of surface area covered by the paint
c. 241.7 is the number of gallons of paint that covers one square foot
d. 241.7 is the number of square feet that one gallon of paint covers
e. *none* of the above

Catherine shuffles her feet across her living room carpet and then she touches a doorknob, which has a surface area of 580 square centimeters. When she touches the doorknob she transfers 2.4 microcoulombs of electric charge that spreads out uniformly over the doorknob’s surface.

Catherine divides 580 by 2.4 and gets 241.7.

Which of the following statements about the number 241.7 is true?

a. 241.7 is the total number of microcoulombs of charge transferred
b. 241.7 is the total number of square centimeters of surface area covered by the charge
c. 241.7 is the number of microcoulombs of charge that covers one square centimeter
d. 241.7 is the number of square centimeters that one microcoulomb of charge covers
e. *none* of the above
Paired Questions: Verbal Interpretation of Ratio

<table>
<thead>
<tr>
<th>Source</th>
<th>Pre-Course</th>
<th>Post-Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paint N=399</td>
<td>88%</td>
<td>86%</td>
</tr>
<tr>
<td>Charge N=457</td>
<td>68%</td>
<td>59%</td>
</tr>
<tr>
<td>Charge (Integers) N=424</td>
<td>72%</td>
<td>64%</td>
</tr>
</tbody>
</table>

N represents the number of participants for each category.
Summary:

Verbal interpretation of ratios is challenging across contexts

- Students tend to engage with algorithms and procedures rather than sense-making
- Students lack of functional understanding of “per”
- Reasoning facility appears to decrease as physical context becomes less familiar
- Instruction may not automatically promote fluency
Use of interviews to explore how deeply student difficulties are held
(or, conversely, how readily students can access productive resources)
Interview 1
(Preservice elementary teacher)

S1: “... the, uh, .04 describes, um, how many centimeters the car traveled in each second...

...from my experience you don’t do it that way. It’s usually the distance over the time. So it should be 60 cm over 2.4 seconds equals whatever. And then it would be, um, centimeters per second. And that’s a more meaningful answer I think.”

I: “More meaningful in what way, can you tell me?”

S1: “I’m not sure, like, scientifically why it would be more meaningful. But . . . the distance formula is equal to rate over time. I don’t know, does that help me? [Writing. Inaudible.] I don’t know if I want to go that way. That’s what I see more often.”
Interview 1
(Preservice elementary teacher)

I: “Tell me again about, about 0.04, what information it gives us.”

S1: “The student divided the seconds by centimeters. So that gave us how far the car moved, um. Oh, gosh. Seconds per centimeter. How far it took, or, how long it took the car to travel one centimeter. I think. Seconds per centimeter. Yes.”

I: “Okay. How do you think about the word ‘per’ in that phrase, ‘seconds per centimeter’?”

S1: “For every sec-, or, [pause]. It describes, um, how much, like, if you ha-, um. [Pause.] My brain doesn’t want to work anymore.”
Interview 1
(Preservice elementary teacher)

Substantial cognitive load associated with interpretation of unfamiliar ratio
S2: “It doesn’t have a meaningful interpretation because it’s not something we look at. Like the opposite.

I: “What could .04 be telling us?”

S2: “So she did 2.4 seconds divided by 60 cm. So that would give us .04 seconds per centimeter. So if you wanted the, to know, like, how, how fast ... how fast it moved in one centimeter.”

I: “Tell me more about what you mean.”

S2: “If it was centimeters per second, that would be the speed of it, so it would move, that many, like a certain amount of centimeters in one second.”

“But since she did 2.4 seconds divided by 60 cm, then that gives her how, that gives her 0.04, um, seconds in one centimeter. So it tells you how much, or how far it moves in 1 cm.”
Interview 2
(Preservice elementary teacher)

S2: “Or, not how far. How, **how long it takes it to move one centimeter.**”

I: “Okay. So if there was another toy car, but the number that came out was 0.05. Would that mean the second toy car was faster or slower than this one?”

S2: “Too many fractions. So, um, trying to think if 0.04 seconds is faster or slower than 0.05 seconds. [Long pause]“

I: “Can you tell me what’s tricky about that?”

S2: “Yeah, fractions.”

...

S2: “I don’t know. I can’t, I don’t know. I can’t think. **It depends on what number is smaller or bigger and I don’t know.**”
Summary of S2 interpretation of 0.04 s/cm

Not meaningful because unfamiliar

How fast car moves in 1 cm

How far car moves in 1 cm

How long car takes to move 1 cm

Struggle to compare the motions represented by 0.04 and 0.05
Interview 3
(Math major in calc-based physics)

“So, 2.4/60 reduces to the fraction .04/1. And so divided by it means ‘per’, which means during a distance interval, I guess. It’s hard to say. Um, for 0.04 seconds, it travels 1 cm. It’s much harder to describe it when it’s not the way it’s used to being presented.”

Student reasoning difficulties with the verbal interpretation of ratios are in some cases not easily resolved
Need: Develop a more comprehensive picture of student reasoning about ratio and proportion.

Response: Ask students to reverse the line of thought.
- Instead of interpreting a given ratio,
- construct a ratio to match a desired interpretation.
Interpreting a given ratio

Constructing a desired ratio

Articulating an additional “mode” of proportional reasoning
Bobbing block task: A block suspended on a spring is made to bob up and down. The motion repeats itself over and over. It is found that \(B \) bobs occur in 10 sec. Write an expression for the number of seconds required for a single bob.

\[
\frac{B}{10} = \text{bobs in 1 second}
\]

\[
S = \# \text{of Seconds for one bob}
\]

\[
B = \# \text{of bobs in 10 seconds}
\]

\[
\text{Between 40\% and 60\% of university students in intro physics courses answer correctly (N>1000)}
\]
Bobbing block question: B bobs occur in 10 seconds. How many sec for a single bob?

Interview response:

“It’s hard to go backwards. It’s more intuitive to think of doing something per unit of time than it is to think of the amount of time required to do something . . . “

In the physics class that I’m in now, having the period and the frequency, relating those two, like, I know that there’s, like, [makes air quotes] an equation for it. Frequency is one over period. But thinking about it in an actual way, trying to represent it physically, takes a lot of mental effort for me personally.”
Bartholomew is making rice pudding using his grandmother’s recipe. For three servings of pudding the ingredients include 0.75 pints of milk and 0.5 cups of rice. Bartholomew looks in his refrigerator and sees he has one pint of milk. Given that he wants to use all of the milk, which of the following expressions will help Bartholomew figure out how many cups of rice he should use?

\[\frac{0.5}{0.75} \quad 0.75/0.5 \quad 0.5 \times 0.75 \quad (0.5 + 1) \times 0.75 \quad \text{none of these} \]

Similar difficulties are observed on a variety of constructing ratio tasks
Strong influence of **structure** on student performance

Use of abstract representation interferes with reasoning

Results from Paired Questions study

<table>
<thead>
<tr>
<th></th>
<th>Underprepared (n=114, s.d. ≈ 9%)</th>
<th>Mainstream (n=624, s.d. ≈ 4%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre(%)</td>
<td>Post(%)</td>
</tr>
<tr>
<td>Rice _integer</td>
<td>60</td>
<td>63</td>
</tr>
<tr>
<td>Rice _decimal</td>
<td>32</td>
<td>61</td>
</tr>
<tr>
<td>Rice _variable</td>
<td>27</td>
<td>20</td>
</tr>
</tbody>
</table>
Proportional Reasoning

- Interpret ratio (using “for each”)
- Construct ratio from measured values
Operationalizing Proportional Reasoning

Systematic progress in understanding student thinking and promoting student learning is facilitated by explicit articulation of the modes of reasoning we expect students to master.
Proportional Reasoning

- Construct ratio from measured values
- Apply ratio to calculate/predict
- Interpret ratio (using “for each”)
- Select ratio as appropriate measure
- Scale functional relationships
- Translate representations
These specific modes of reasoning are likely not employed explicitly by students and are not necessarily distinct cognitive entities.
An invention task challenges students to identify the key features of a system . . .

and develop a way to characterize the system that allows meaningful comparisons to be made.
Invention Instruction

Often uses *contrasting cases*:

- situations that are recognizably similar,
- yet different in important ways.

Example:
Evaluating the reliability of different pitching machines.

From Himmelberger and Schwartz, 2000
Invention instruction:

Preparation for future learning
At Rutgers, WWU, and NMSU, we are adapting invention instruction to introductory physics courses, with a specific goal of developing student facility with ratio and product quantities in context.
Strategy for implementing invention instruction

• Develop tasks in which students invent quantities to characterize physical systems.
• Group tasks into sequences that bridge everyday to abstract contexts.
• Integrate questions to support development of reasoning facility.
Invent a *popping index* to rank the different brands according to how fast they pop.

“Hmmm, Hot Pops has the most corns but also takes the longest...”
Invent a *popping index* to rank the different brands according to how fast they pop.

“10 corns in 20 sec...”

“5 more corns in the next 10 sec...”

“and 10 more in the next 20 sec...”

“I see a pattern! Let’s invent

\[
\frac{\text{(# corns popped)}}{\text{(time elapsed)}} \text{ as our index!}
\]
Sample Invention Sequence: *Kinematics*

Let’s look at another index. Come up with a *fastness* index for cars. Each car drips oil once every second. Cars from the same company have the same fastness. How many companies?
A full bowl of popcorn has 60 corns. Determine the time for the fastest popcorn to fill a bowl.

Write an expression for the time required for the fastest car to travel B blocks.
Sample Invention Sequence: *Kinematics*

Now come up with a *speeding up index* for cars with dripping oil.
Sample Invention Sequence: Kinematics

Explain the difference between moving fast and speeding up quickly.
Assessing student learning: *Toy car task*

Before course instruction:

42% correct

After course instruction using invention sequences:

> 95% correct

N = 84, Gen Ed Physics at WWU
Assessing student learning: *Inverse g task*

[5 pts] An object released near the surface of the Earth is found to move with constant acceleration, speeding up at a rate of about 10 m/s². Consider the inverse of this number: 0.1 s²/m. Give an interpretation of this number. Using everyday language, describe the specific information that 0.1 provides about the object’s motion.

\[
\frac{60 \text{ m/s}}{\text{second}} \quad \text{or} \quad \frac{0.1 \text{ second}}{1 \text{ m/s}}
\]

This number tells us that for every 0.1 second that passes the object increases its speed by 1 m/s.

30% correct at end of course
“The invention activities helped me to understand how the core of science works...values presented by scientists aren't some sort of godly measurements that are perfect and unassailable, and helped to ‘let us in’ on how physics really works; it allowed us to understand the process and once we understood the process we could create measurement relationships of our own as well as understand those of others.”
Inservice HS physics teacher (after using Invention materials with his students):

“I did the following problem as an example in lecture of constant velocity with more than one object for the umpteenth time in my life:

The first two sprinters in a 100 m race finish in 10.5 s and 11.5 s. Assuming constant speed, what is the separation between them when the first one crosses the finish line?

“After having gone through a standard analytical and then a graphical solution in lecture, a student came up to me after lecture and told me he thought of a really simple way to do that problem. He said:
‘The second runner runs 1 second less than the time necessary for him to run 100 m when the first runner crosses the line. So, if you find the 2nd runner's fastness index, then its value tells you how far he'll be behind the 100m mark one second before he gets there.’

http://inventiontasks.physics.rutgers.edu/index.html